Skip to main content
Log in

Chimera states in a class of hidden oscillatory networks

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We have identified the chimera states in a class of non-locally coupled network of hidden oscillators without equilibrium, with one and two stable equilibria. All these cases exhibit hidden chaotic oscillations when isolated. We show that the choice of initial conditions is crucial to observe chimeras in these hidden oscillatory networks. The observed states are quantified and delineated with an aid of the incoherence measure. In addition, we computed the basin stability of the obtained chimeras and found that the models without equilibrium and with one equilibrium are diverging to infinity past certain interaction strength. Interestingly, for a no equilibrium model the separation of two incongruous units follows a power law as a function of coupling strength. Remarkably, we detected that the model with one stable equilibrium manifests multi-clustered chimera states owing to its multi-stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hizanidis, J., Kanas, V.G., Bezerianos, A., Bountis, T.: Chimera states in networks of nonlocally coupled hindmarsh-rose neuron models. Int. J. Bifurc. Chaos 24(03), 1450030 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abrams, D.M., Strogatz, S.H.: Chimera states for coupled oscillators. Phys. Rev. Lett. 93(17), (2004)

  3. Abrams, D.M., Strogatz, S.H.: Chimera states in a ring of nonlocally coupled oscillators. Int. J. Bifurc. Chaos 16(01), 21 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Phillips, J., Van der Zant, H., White, J., Orlando, T.: Influence of induced magnetic fields on the static properties of Josephson-junction arrays. Phys. Rev. B 47(9), 5219 (1993)

    Article  Google Scholar 

  5. Meinhardt, H., Klingler, M.: A model for pattern formation on the shells of molluscs. J. Theor. Biol. 126(1), 63 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Murray, J.D.: Mathematical biology: I. An introduction, vol. 17. Springer, New York (2007)

    Google Scholar 

  7. Swindale, N.V.: A model for the formation of ocular dominance stripes. Proc. R. Soc. Lond. B Biol. Sci. 208(1171), 243 (1980)

  8. Rattenborg, N.C., Amlaner, C., Lima, S.: Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci. Biobehav. Rev. 24(8), 817 (2000)

    Article  Google Scholar 

  9. Olbrich, E., Claussen, J.C., Achermann, P.: The multiple time scales of sleep dynamics as a challenge for modelling the sleeping brain. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369(1952), 3884 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huo, S., Tian, C., Kang, L., Liu, Z.: Chimera states of neuron networks with adaptive coupling. Nonlinear Dyn. 96(1), 75 (2019)

    Article  MATH  Google Scholar 

  11. Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. Eur. Phys. J. B 61(4), 485 (2008)

    Article  Google Scholar 

  12. Zhu, Y., Zheng, Z., Yang, J.: Chimera states on complex networks. Phys. Rev. E 89(2), (2014)

  13. Carvalho, P.R., Savi, M.A.: Synchronization and chimera state in a mechanical system. Nonlinear Dyn. 1–19 (2020)

  14. Dudkowski, D., Czołczyński, K., Kapitaniak, T.: Traveling chimera states for coupled pendula. Nonlinear Dyn. 95(3), 1859 (2019)

    Article  MATH  Google Scholar 

  15. Martens, E.A., Thutupalli, S., Fourrière, A., Hallatschek, O.: Chimera states in mechanical oscillator networks. Proc. Natl. Acad. Sci. 110(26), 10563 (2013)

    Article  Google Scholar 

  16. Wojewoda, J., Czolczynski, K., Maistrenko, Y., Kapitaniak, T.: The smallest chimera state for coupled pendula. Sci. Rep. 6(1), 1 (2016)

    Article  Google Scholar 

  17. Nkomo, S., Tinsley, M.R., Showalter, K.: Chimera states in populations of nonlocally coupled chemical oscillators. Phys. Rev. Lett. 110(24), (2013)

  18. Hagerstrom, A.M., Murphy, T.E., Roy, R., Hövel, P., Omelchenko, I., Schöll, E.: Experimental observation of chimeras in coupled-map lattices. Nat. Phys. 8(9), 658 (2012)

    Article  Google Scholar 

  19. Yeldesbay, A., Pikovsky, A., Rosenblum, M.: Chimeralike states in an ensemble of globally coupled oscillators. Phys. Rev. Lett. 112(14), (2014)

  20. Schmidt, L., Krischer, K.: Clustering as a prerequisite for chimera states in globally coupled systems. Phys. Rev. Lett. 114(3) (2015)

  21. Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N.V., Leonov, G.A., Prasad, A.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Leonov, G., Kuznetsov, N., Mokaev, T.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 224(8), 1421 (2015)

    Article  Google Scholar 

  23. Sharma, P.R., Shrimali, M.D., Prasad, A., Kuznetsov, N.V., Leonov, G.A.: Controlling dynamics of hidden attractors. Int. J. Bifurc. Chaos 25(04), 1550061 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Leonov, G., Kuznetsov, N., Vagaitsev, V.: Hidden attractor in smooth chua systems. Phys. D Nonlinear Phenom. 241(18), 1482 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stankevich, N.V., Kuznetsov, N.V., Leonov, G.A., Chua, L.O.: Scenario of the birth of hidden attractors in the chua circuit. Int. J. Bifurc. Chaos 27(12), 1730038 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, M., Yu, J., Bao, B.C.: Finding hidden attractors in improved memristor-based chua”s circuit. Elect. Lett. 51(6), 462 (2015)

    Article  Google Scholar 

  27. Chang, H., Li, Y., Yuan, F., Chen, G.: Extreme multistability with hidden attractors in a simplest memristor-based circuit. Int. J. Bifurc. Chaos 29(06), 1950086 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pham, V.T., Vaidyanathan, S., Volos, C., Jafari, S., Kuznetsov, N., Hoang, T.: A novel memristive time-delay chaotic system without equilibrium points. Eur. Phys. J. Spec. Top. 225(1), 127 (2016)

    Article  Google Scholar 

  29. Leonov, G., Kuznetsov, N., Kiseleva, M., Solovyeva, E., Zaretskiy, A.: Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dyn. 77(1–2), 277 (2014)

    Article  Google Scholar 

  30. Kuznetsov, N., Leonov, G., Yuldashev, M., Yuldashev, R.: Hidden attractors in dynamical models of phase-locked loop circuits: limitations of simulation in matlab and spice. Commun. Nonlinear Sci. Numer. Simul. 51, 39 (2017)

    Article  MATH  Google Scholar 

  31. Kuznetsov, N.: Theory of hidden oscillations and stability of control systems. J. Comput. Syst. Sci. Int. 59(5), 647 (2020). https://doi.org/10.1134/S1064230720050093

    Article  MATH  Google Scholar 

  32. Leonov, G., Kuznetsov, N., Mokaev, T.: Hidden attractor and homoclinic orbit in lorenz-like system describing convective fluid motion in rotating cavity. Commun. Nonlinear Sci. Numer. Simul. 28(1–3), 166 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kuznetsov, A., Kuznetsov, S., Mosekilde, E., Stankevich, N.: Co-existing hidden attractors in a radio-physical oscillator system. J. Phys. A Math. Theor. 48(12) (2015)

  34. Boiko, I., Kuznetsov, N., Mokaev, R., Mokaev, T., Yuldashev, M., Yuldashev, R.: On counter-examples to aizerman and kalman conjectures. Int. J. Control 1–8 (2020)

  35. Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems. from hidden oscillations in hilbert-kolmogorov, aizerman, and kalman problems to hidden chaotic attractor in chua circuits. Int. J. Bifurc. Chaos 23(01), 1330002 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wei, Z., Wang, R., Liu, A.: A new finding of the existence of hidden hyperchaotic attractors with no equilibria. Math. Comput. Simul. 100, 13 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Munmuangsaen, B., Srisuchinwong, B.: A hidden chaotic attractor in the classical lorenz system. Chaos Solitons Fractals 107, 61 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wei, Z.: Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett. A 376(2), 102 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pham, V.T., Vaidyanathan, S., Volos, C., Jafari, S., Kingni, S.T.: A no-equilibrium hyperchaotic system with a cubic nonlinear term. Optik 127(6), 3259 (2016)

    Article  Google Scholar 

  40. Molaie, M., Jafari, S., Sprott, J.C., Golpayegani, S.M.R.H.: Simple chaotic flows with one stable equilibrium. Int. J. Bifurc. Chaos 23(11), 1350188 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Deng, Q., Wang, C., Yang, L.: Four-wing hidden attractors with one stable equilibrium point. Int. J. Bifurc. Chaos 30(06), 2050086 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, X., Chen, G.: A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 17(3), 1264 (2012)

    Article  MathSciNet  Google Scholar 

  43. Wang, X., Akgul, A., Cicek, S., Pham, V.T., Hoang, D.V.: A chaotic system with two stable equilibrium points: dynamics, circuit realization and communication application. Int. J. Bifurc. Chaos 27(08), 1750130 (2017). https://doi.org/10.1142/S0218127417501309

    Article  MathSciNet  MATH  Google Scholar 

  44. Gopal, R., Chandrasekar, V., Venkatesan, A., Lakshmanan, M.: Observation and characterization of chimera states in coupled dynamical systems with nonlocal coupling. Phys. Rev. E 89(5) (2014)

  45. Rakshit, S., Bera, B.K., Perc, M., Ghosh, D.: Basin stability for chimera states. Sci. Rep. 7(1), 1 (2017)

    Article  Google Scholar 

  46. Faghani, Z., Arab, Z., Parastesh, F., Jafari, S., Perc, M., Slavinec, M.: Effects of different initial conditions on the emergence of chimera states. Chaos Solitons Fractals 114, 306 (2018). https://doi.org/10.1016/j.chaos.2018.07.023.http://www.sciencedirect.com/science/article/pii/S0960077918306155

Download references

Acknowledgements

The authors would like to acknowledge the funding support by DST-RSF project vide grant no. INT/RUS/RSF/P-18 and 19-41-02002. AP extends his gratitude to loE, University of Delhi, for FRP grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Dev Shrimali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul Asir, M., Prasad, A., Kuznetsov, N.V. et al. Chimera states in a class of hidden oscillatory networks. Nonlinear Dyn 104, 1645–1655 (2021). https://doi.org/10.1007/s11071-021-06355-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06355-w

Keywords

Navigation