Skip to main content

Advertisement

Log in

Contact dynamics analysis of the single-pin meshing pair of a tracked vehicle

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Single-pin meshing pairs are widely used in light-tracked vehicles. The purpose of this paper is to establish a nonlinear contact algorithm between the sprocket and track for multibody dynamics simulation. Based on the actual configuration, the tooth groove profile is discretized into three cambered surfaces, and the track pin is modeled as a cylinder with a protrusion. A body-fixed frame is introduced for each contact surface to facilitate the geometric contact criteria and contact force evaluation. Then the features of equal-pitch, sub-pitch and extra-pitch meshing are described with multibody dynamics analysis. It indicates that track pitch and sprocket pitch are the critical process parameters. A field test was performed to excavate the cause of chassis vibration. Compared with simulation results, the proposed contact model can effectively simulate the high-frequency excitation applied on a tracked vehicle. To improve its service life, a suggestion for the sprocket and track design is developed to fully use the sub-pitch meshing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

TVMP:

Meshing pair of a tracked vehicle

MBD:

Multibody dynamics

CWT:

Continuous wavelet transform

MSTMM:

Transfer matrix method for multibody systems

PSD:

Power spectral density

PR:

Pitch ratio

RMS:

Root-mean-square

SD:

Standard deviation

References

  1. Zhao, Z., Liu, H., Chen, H., et al.: Kinematics-aware model predictive control for autonomous high-speed tracked vehicles under the off-road conditions. Mech. Syst. Signal Process. 123, 333–350 (2019)

    Article  Google Scholar 

  2. Mocera, F., Nicolini, A.: Multibody simulation of a small size farming tracked vehicle. Proc. Struct. Integr. 8, 118–125 (2018)

    Google Scholar 

  3. Mȩżyk, A., Czapla, T., Klein, W., et al.: Numerical simulation of active track tensioning system for autonomous hybrid vehicle. Mech. Syst. Signal Process. 89, 108–118 (2017)

    Article  Google Scholar 

  4. Ryu, H.S., Bae, D.S., Choi, J.H., et al.: A compliant track link model for high speed, high mobility tracked vehicles. Int. J. Numer. Meth. Eng. 48(10), 1481–1502 (2000)

    Article  MATH  Google Scholar 

  5. Sebastian, B., Ben-Tzvi, P.: Active disturbance rejection control for handling slip in tracked vehicle locomotion. J. Mech. Robot. 11, 1–12 (2019)

    Article  Google Scholar 

  6. Maddock, D.G., Anderson, N.E., Kahraman, A., et al.: Prediction of mechanical efficiency of parallel-axis gear pairs. J. Mech. Des. 129(1), 58–68 (2007)

    Article  Google Scholar 

  7. Li, S., Kahraman, A.: Prediction of spur gear mechanical power losses using a transient elastohydrodynamic lubrication model. Tribol. Trans. 53(4), 554–563 (2010)

    Article  Google Scholar 

  8. Shi, S., Peng, X., Zhao, N., et al.: A new method for polygon effect analysis of saw chain. J. Mech. Sci. Technol. 26(9), 2705–2710 (2012)

    Article  Google Scholar 

  9. Dursun, T., Büyükcivelek, F., Utlu, Ç.: A review on the gun barrel vibrations and control for a main battle tank. Def. Technol. 13(5), 353–359 (2017)

    Article  Google Scholar 

  10. Scholar, C., Perkins, N.C.: Efficient vibration modelling of elastic vehicle track systems. J. Sound Vib. 228(5), 1057–1078 (1999)

    Article  Google Scholar 

  11. Sandu, C., Freeman, J.S.: Military tracked vehicle model, part I: multibody dynamics formulation. Int. J. Veh. Syst. Model. Test. 1(1), 48–67 (2005)

    Google Scholar 

  12. Huh, K., Hong, D.: Track tension estimation in tacked vehicles under various maneuvering tasks. J. Dyn. Sys. Meas. Control 123, 179–185 (2001)

    Article  Google Scholar 

  13. Nakanishi, T., Shabana, A.A.: Contact forces in the non-linear dynamic analysis of tracked vehicles. Int. J. Numer. Meth. Eng. 37(8), 1251–1275 (1994)

    Article  Google Scholar 

  14. Lee, J.H., Choi, J.H., Shabana, A.A.: Spatial dynamics of multibody tracked vehicles part II: contact forces and simulation results. Veh. Syst. Dyn. 29(2), 113–137 (1998)

    Article  Google Scholar 

  15. Cheng, Y., An, L., Yin, S., et al.: Multi-variation characteristic of dual phase hy-vo silent chain transmission system. Mech. Mach. Theory 103, 40–50 (2016)

    Article  Google Scholar 

  16. Xu, L.X., Chen, B.K., Li, C.Y.: Dynamic modelling and contact analysis of bearing-cycloid-pinwheel transmission mechanisms used in joint rotate vector reducers. Mech. Mach. Theory 137, 432–458 (2019)

    Article  Google Scholar 

  17. Xu, L.X.: A method for modelling contact between circular and non-circular shapes with variable radii of curvature and its application in planar mechanical systems. Multibody Syst. Dyn. 39(3), 153–174 (2017)

    Article  MathSciNet  Google Scholar 

  18. Ambrosio, J., Malça, C., et al.: Planar roller chain drive dynamics using a cylindrical contact force model. Mech. Based Des. Struct. 44(1–2), 109–122 (2016)

    Article  Google Scholar 

  19. Ambrósio, J., Pombo, J.: A unified formulation for mechanical joints with and without clearances/bushings and/or stops in the framework of multibody systems. Multibody Syst. Dyn. 42(3), 317–345 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Isaac, F., Marques, F., Dourado, N., et al.: A finite element model of a 3d dry revolute joint incorporated in a multibody dynamic analysis. Multibody Syst. Dyn. 45(3), 293–313 (2019)

    Article  MathSciNet  Google Scholar 

  21. Tandler, R., Bohn, N., Gabbert, U., et al.: Analytical wear model and its application for the wear simulation in automotive bush chain drive systems. Wear 446–447, 203193 (2020)

    Article  Google Scholar 

  22. Wang, G., Liu, C.: Further investigation on improved viscoelastic contact force model extended based on Hertz’s law in multibody system. Mech. Mach. Theory 153, 103986 (2020)

    Article  Google Scholar 

  23. Fuglede, N., Thomsen, J.J.: Kinematics of roller chain drives - exact and approximate analysis. Mech. Mach. Theory 100, 17–32 (2016)

    Article  Google Scholar 

  24. Pereira, C.M., Ambrósio, J.A., Ramalho, A.L.: Dynamics of chain drives using a generalized revolute clearance joint formulation. Mech. Mach. Theory 92, 64–85 (2015)

    Article  Google Scholar 

  25. Pereira, C.M., Ambrósio, J.A., Ramalho, A.L.: A methodology for the generation of planar models for multibody chain drives. Multibody Syst. Dyn. 24(3), 303–324 (2010)

    Article  MATH  Google Scholar 

  26. Wang, P., Rui, X., Yu, H.: Study on dynamic track tension control for high-speed tracked vehicles. Mech. Syst. Signal Process. 132, 277–292 (2019)

    Article  Google Scholar 

  27. Wang, P., Yu, H., Rui, X., et al.: Transversal vibration analysis of the upper span of nonlinear closed-loop track systems. Appl. Math. Model. 78, 249–267 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, C., Zhang, K., Yang, R.: The fem analysis and approximate model for cylindrical joints with clearances. Mech. Mach. Theory 42(2), 183–197 (2007)

    Article  MATH  Google Scholar 

  29. Dubowsky, S., Freudenstein, F.: Dynamic analysis of mechanical systems with clearances—part 2: dynamic response. J. Eng. Ind. 93(1), 310–316 (1971)

    Article  Google Scholar 

  30. Liu, C., Zhang, K., Yang, L., et al.: The compliance contact model of cylindrical joints with clearances. Acta Mech. Sinica-Prc. 21(5), 451–458 (2005)

    Article  MATH  Google Scholar 

  31. Jiang, S., Chen, X.: Reducing undesirable effects of clearances on dynamic and wear of planar multi-link mechanism. Nonlinear Dyn. 100(2), 1173–1201 (2020)

    Article  Google Scholar 

  32. Wang, X., Liu, G., Ma, S.: Dynamic analysis of planar mechanical systems with clearance joints using a new nonlinear contact force model. J. Mech. Sci. Technol. 30(4), 1537–1545 (2016)

    Article  Google Scholar 

  33. Wang, X., Liu, G.: Modeling and simulation of revolute joint with clearance in planar multi-body systems. J. Mech. Sci. Technol. 29(10), 4113–4120 (2015)

    Article  Google Scholar 

  34. Flores, P., MacHado, M., Silva, M.T., et al.: On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 25(3), 357–375 (2011)

    Article  MATH  Google Scholar 

  35. Pennestrì, E., Rossi, V., Salvini, P., et al.: Review and comparison of dry friction force models. Nonlinear Dyn. 83(4), 1785–1801 (2016)

    Article  MATH  Google Scholar 

  36. Mostaghel, N.: A non-standard analysis approach to systems involving friction. J. Sound Vib. 284, 583–595 (2005)

    Article  Google Scholar 

  37. Rui, X., Bestle, D., Zhang, J., et al.: A new version of transfer matrix method for multibody systems. Multibody Syst. Dyn. 38(2), 137–156 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, Y., Ren, S., Li, Y.: Design and manufacturing of a novel high contact ratio internal gear with a circular arc contact path. Int. J. Mech. Sci. 153–154, 143–153 (2019)

    Google Scholar 

  39. Yixing, W., Zhifeng, Z., Guangyi, Z.: A study on jumping-over-teeth phenomenon in roller chain drive. J. Mech. Des. 112, 569–574 (1990)

    Article  Google Scholar 

  40. Wang, Z., Qian, J., Li, Y., et al.: Time-frequency analysis of the tip motion in liquids using the wavelet transform in dynamic atomic force microscopy. Nanotechnology 29(38), 1–7 (2018)

    Article  Google Scholar 

  41. Wen, W., Yamashita, A., Asama, H.: Measurement of the perception of control during continuous movement using electroencephalography. Front. Hum. Neurosci. 11, 1–7 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by Natural Science Foundation of China Government (No. 11972193) and Natural Science Foundation of Jiangsu Province (No. BK20190438).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Wang, G., Rui, X. et al. Contact dynamics analysis of the single-pin meshing pair of a tracked vehicle. Nonlinear Dyn 104, 1139–1155 (2021). https://doi.org/10.1007/s11071-021-06327-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06327-0

Keywords

Navigation