Skip to main content
Log in

Nonlinear resonant response of the cable-stayed beam with one-to-one internal resonance in veering and crossover regions

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, the large amplitude vibration of the cable-stayed beam subjected to external excitation is investigated. Emphasis is focused on the one-to-one resonant interaction between hybrid and hybrid/local modes, which may be activated in the veering and crossover regions. The Hamilton’s principle and multi-mode discretization are applied to obtain the discrete model governing the in-plane vibration of the cable-stayed beam. Then, the method of multiple scales is applied to solve the equation of motion, and the displacement of the cable-stayed beam and corresponding modulation equations are determined. In the following, the equilibrium solution of the modulation equations and the associated stability are examined to discuss the periodic motion of the cable-stayed beam. Whereas the shooting method is applied to investigate the dynamic solution to qualitatively illustrate the non-periodic motion. Numerical simulations are performed to verify the periodic solution and examine the nonlinear dynamics of the cable-stayed beam. Particular attention is placed on the chaotic dynamic of the cable-stayed beam in unstable region. It is shown that the equilibrium and dynamic solutions may undergo different bifurcations, i.e., Hopf, torus and cyclic-fold bifurcations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. This assumption may conflict with the longitudinal deformability of the beam (Eq. (2)). However, it is limited to the tip of the beam, and the relevant effects on the displacement distribution of the beam should be very small.

References

  1. Rega, G.: Nonlinear vibrations of suspended cables. Part I: modeling and analysis. Appl. Mech. Rev. 57, 443–478 (2004)

    Article  Google Scholar 

  2. Geogakis, C.T., Taylor, C.A.: Nonlinear dynamics of cable stays. Part 1: sinusoidal cable support excitation. J. Sound Vib. 279, 619–639 (2005)

    Article  Google Scholar 

  3. Warnitchai, P., Fujino, Y., Susumpow, T.: A non-linear dynamic model for cables and its application to a cable-structure system. J. Sound Vib. 187, 695–712 (1995)

    Article  Google Scholar 

  4. Gattulli, V., Morandini, M., Paolone, A.: A parametric analytical model for non-linear dynamics in cable-stayed beam. Earthq. Eng. Struct. Dyn. 31, 1281–1300 (2002)

    Article  Google Scholar 

  5. Fujino, Y., Warnitchai, P., Pacheco, B.M.: An experimental and analytical study of autoparametric resonance in a 3DOF model of cable-stayed beam. Nonlinear Dyn. 4, 111–138 (1993)

    Google Scholar 

  6. Xia, Y., Fujino, Y.: Auto-parametric vibration of a cable-stayed-beam structure under random excitation. J. Eng. Mech. 132, 279–286 (2006)

    Article  Google Scholar 

  7. Gattulli, V., Lepidi, M.: Nonlinear interactions in the planar dynamics of cable-stayed beam. Int. J. Solids Struct. 40, 4729–4748 (2003)

    Article  Google Scholar 

  8. Gattulli, V., Lepidi, M., Macdonald, J.H.G., Taylor, A.C.: One-to-two global interaction in a cable-stayed beam observed through analytical, finite element and experimental models. Int. J. Non-linear Mech. 40, 571–588 (2005)

    Article  Google Scholar 

  9. Wei, M.H., Xiao, Y.Q., Liu, H.T.: Bifurcaton and chaos of a cable-beam coupled system under simultaneous internal and external resonances. Nonlinear Dyn. 67, 1969–1984 (2012)

    Article  Google Scholar 

  10. Lenci, S., Ruzziconi, L.: Nonlinear phenomena in the single-mode dynamics of a cable-supported beam. Int. J. Bifurc. Chaos 19, 923–945 (2009)

    Article  MathSciNet  Google Scholar 

  11. Zhang, W., Cao, D.X.: Studies on bifurcation and chaos of a string-beam coupled system with two degress-of-freedom. Nonlinear Dyn. 45, 131–147 (2006)

    Article  Google Scholar 

  12. Cong, Y., Kang, H., Guo, T.: Planar multimodal 1:2:2 internal resonance analysis of cable-stayed bridge. Mech. Syst. Signal Process. 120, 505–523 (2019)

    Article  Google Scholar 

  13. Kang, H., Guo, T., Zhao, Y., Fu, W., Wang, L.: Dynamic modeling and in-plane 1:1:1 internal resonance analysis of cable-stayed bridge. Eur. J. Mech./A Solids 62, 94–109 (2017)

    Article  MathSciNet  Google Scholar 

  14. Lacarbonara, W., Rega, G., Nayfeh, A.H.: Resonant non-linear normal modes. Part I: analytical treatment for structural one-dimensional systems. Int. J. Nonlinear Mech. 38, 851–872 (2003)

    Article  Google Scholar 

  15. Xu, Y.L., Yu, Z.: Vibration of inclined sag cables with oil dampers in cable-stayed bridges. J. Bridge Eng. 3, 194–203 (1998)

    Article  Google Scholar 

  16. Rega, G., Srinil, N.: Nonlinear hybrid-mode resonant forced oscillations of sagged inclined cables at avoidances. J. Comput. Nonlinear Dyn. 2, 324–336 (2007)

    Article  Google Scholar 

  17. Lacarbonara, W., Arafat, H.N., Nayfeh, A.H.: Non-linear interactions in imperfect beams at veering. Int. J. Nonlinear Mech. 40, 987–1003 (2005)

    Article  Google Scholar 

  18. Srinil, N., Rega, G.: The effects of kinematic condensation on internally resonant forced vibrations of shallow horizontal cables. Int. J. Nonlinear Mech. 42, 180–195 (2007)

    Article  Google Scholar 

  19. Gattulli, V., Lepidi, M.: Localization and veering in the dynamics of cable-stayed bridges. Comput. Struct. 85, 1661–1678 (2007)

    Article  Google Scholar 

  20. Reddy, J.N.: Energy Principles and Variational Methods in Applied Mechanics, 2nd edn. Wiley, New York (2002)

    Google Scholar 

  21. Luongo, A., Zulli, D.: Mathematical Models of Beams and Cables. Wiley ISTE, New York (2013)

    Book  Google Scholar 

  22. Wang, L., Zhang, X., Huang, S., Li, L.: Measured frequency for the estimation of cable force by vibration method. J. Eng. Mech. 141, 06014020-1-7 (2015)

    Google Scholar 

  23. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley-Interscience, New York (1995)

    Book  Google Scholar 

  24. Wang, L., Ma, J., Yang, M., Li, L., Zhao, Y.: Multimode dynamics of inextensional beams on the elastic foundation with two-to-one internal resonances. J. Appl. Mech. 80, 061016-1-11 (2013)

    Google Scholar 

  25. Rega, G., Lacarbonara, W., Nayfeh, A.H., Chin, C.M.: Multiple resonances in suspended cables: direct versus reduced-order models. Int. J. Non-linear Mech. 34, 901–924 (1999)

    Article  Google Scholar 

  26. Wang, L., Zhao, Y.: Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions. J. Sound Vib. 327, 121–133 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by Natural and Science Foundation of Hunan Province under Grant No. 2018JJ2029, Science and Technology Program of Ministry of Transport (2013318798320) and Scientific Research Fund of Hunan Provincial Education Department (Grant No. 19B192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianhua Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The second-order nonlinear interaction coefficients of the modulation equations can be expressed as [14]:

$$\begin{aligned} K_{hh}= & {} \sum ^{\infty }_{k=1}\bigg [(\varLambda _{hhk}+\varLambda _{hkh})\varLambda _{khh}\bigg (\frac{2}{\omega ^2_k}+\frac{1}{\omega ^2_k-4\omega ^2_h}\bigg )\bigg ]\nonumber \\&+\,3\varGamma _{hhhh},~~~~h=m,n, \end{aligned}$$
(59)
$$\begin{aligned} K_{mn}= & {} \sum ^{\infty }_{k=1}\bigg [(\varLambda _{mmk} +\,\varLambda _{mkm})\frac{2\varLambda _{knn}}{\omega _k^2}\nonumber \\&+(\varLambda _{mnk}+\varLambda _{mkn})(\varLambda _{kmn}+\varLambda _{knm})\nonumber \\&\bigg (\frac{1}{\omega ^2_k-(\omega _n+\omega _m)^2}+\frac{1}{\omega ^2_k-(\omega _n-\omega _m)^2}\bigg )\bigg ]\nonumber \\&+\,2(\varGamma _{mnnm}+\varGamma _{mnmn}+\varGamma _{mmnn}),\nonumber \\ K_1= & {} \sum ^{\infty }_{k=1}\bigg [(\varLambda _{nmk}+\varLambda _{nkm})\frac{\varLambda _{knn}}{\omega ^2_k-4\omega ^2_n}\nonumber \\&+\,(\varLambda _{nnk}+\varLambda _{nkn})\frac{(\varLambda _{kmn}+\varLambda _{knm})}{\omega ^2_k}\bigg ]\nonumber \\&+\,\varGamma _{nnnm}+\varGamma _{nnmn}+\varGamma _{nmnn}, \end{aligned}$$
(60)
$$\begin{aligned} K_2= & {} \sum ^{\infty }_{k=1}\bigg [(\varLambda _{nmk}+\varLambda _{nkm})\varLambda _{kmm}\bigg (\frac{2}{\omega ^2_k}+\frac{1}{\omega ^2_k-4\omega ^2_m}\bigg )\bigg ]\nonumber \\&+\,3\varGamma _{nmmm}, \end{aligned}$$
(61)
$$\begin{aligned} K_3= & {} \sum ^{\infty }_{k=1}\bigg [(\varLambda _{nnk}+\varLambda _{nkn})\frac{\varLambda _{kmm}}{\omega ^2_k-4\omega ^2_m}\nonumber \\&+\,(\varLambda _{nmk}+\varLambda _{nkm})\frac{\varLambda _{kmn}+\varLambda _{knm}}{\omega ^2_k}\bigg ]\nonumber \\&+\,\varGamma _{nmmn}+\varGamma _{nmnm}+\varGamma _{nnmm}. \end{aligned}$$
(62)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Peng, J., Zhang, X. et al. Nonlinear resonant response of the cable-stayed beam with one-to-one internal resonance in veering and crossover regions. Nonlinear Dyn 103, 115–135 (2021). https://doi.org/10.1007/s11071-020-06107-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06107-2

Keywords

Navigation