Skip to main content
Log in

From super-Bloch oscillations to sudden self-trapping in Bose–Einstein condensates with inter-atomic interactions

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study super-Bloch oscillations of ultracold atoms loaded in a lattice potential. We consider nonlinear contribution emerging from a mean-field approximation for the inter-particle interactions, as well as the wave-packet subjected to a time-dependent force which arises from a uniform acceleration of the condensate superposed with an additional harmonic modulation. Contrary to expectation, we describe long-lived super-Bloch oscillations for systems with inter-particle interaction even for initial atomic clouds fully localized. Furthermore, we showed a detailed study that characterizes the regime in which such phenomenology still survives. However, we reveal how super-Bloch oscillations cease to exist in the regime of strong enough inter-atomic interactions: The system suddenly migrates from super-Bloch oscillations to a self-trapped regime. In addition to show a phase diagram describing how the critical nonlinearity depends on external forces, we unveil the mechanism underlying the self-trapping transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bloch, F.: Über die Quantenmechanik der Elektronen in Kristallgittern. Zeitschrift für Physik 52(7), 555 (1929)

    MATH  Google Scholar 

  2. Zener, C., Fowler, R.H.: A theory of the electrical breakdown of solid dielectrics. Proc. R. Soc. Lond. Ser. A 145(855), 523 (1934). Please check and confirm the edit made in the reference [2]

    MATH  Google Scholar 

  3. Dias, W.S., Nascimento, E.M., Lyra, M.L., de Moura, F.A.B.F.: Frequency doubling of Bloch oscillations for interacting electrons in a static electric field. Phys. Rev. B 76, 155124 (2007)

    Google Scholar 

  4. Domínguez-Adame, F., Malyshev, V.A., de Moura, F.A.B.F., Lyra, M.L.: Bloch-like oscillations in a one-dimensional lattice with long-range correlated disorder. Phys. Rev. Lett. 91, 197402 (2003)

    Google Scholar 

  5. Longhi, S.: Bloch oscillations in complex crystals with \({\cal{P}}{\cal{T}}\) symmetry. Phys. Rev. Lett. 103, 123601 (2009)

    Google Scholar 

  6. Dias, W., Lyra, M., de Moura, F.: The role of Hubbard-like interaction in the dynamics of two interacting electrons. Phys. Lett. A 374(44), 4554 (2010)

    Google Scholar 

  7. Díaz, E., García Mena, A., Asakura, K., Gaul, C.: Super-Bloch oscillations with modulated interaction. Phys. Rev. A 87, 015601 (2013)

    Google Scholar 

  8. Dreisow, F., Szameit, A., Heinrich, M., Pertsch, T., Nolte, S., Tünnermann, A., Longhi, S.: Bloch-Zener Oscillations in Binary Superlattices. Phys. Rev. Lett. 102, 076802 (2009)

    Google Scholar 

  9. Corrielli, G., Crespi, A., Della Valle, G., Longhi, S., Osellame, R.: Fractional Bloch oscillations in photonic lattices. Nat. Commun. 4(1), 1555 (2013)

    Google Scholar 

  10. Preiss, P.M., Ma, R., Tai, M.E., Lukin, A., Rispoli, M., Zupancic, P., Lahini, Y., Islam, R., Greiner, M.: Strongly correlated quantum walks in optical lattices. Science 347(6227), 1229 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Ribeiro, P., Lazarides, A., Haque, M.: Many-body quantum dynamics of initially trapped systems due to a stark potential: thermalization versus Bloch oscillations. Phys. Rev. Lett. 124, 110603 (2020)

    MathSciNet  Google Scholar 

  12. Feldmann, J., Leo, K., Shah, J., Miller, D.A.B., Cunningham, J.E., Meier, T., von Plessen, G., Schulze, A., Thomas, P., Schmitt-Rink, S.: Optical investigation of Bloch oscillations in a semiconductor superlattice. Phys. Rev. B 46, 7252 (1992)

    Google Scholar 

  13. Leo, K., Bolivar, P.H., Brüggemann, F., Schwedler, R., Köhler, K.: Observation of Bloch oscillations in a semiconductor superlattice. Solid State Commun. 84(10), 943 (1992)

    Google Scholar 

  14. Waschke, C., Roskos, H.G., Schwedler, R., Leo, K., Kurz, H., Köhler, K.: Coherent submillimeter-wave emission from Bloch oscillations in a semiconductor superlattice. Phys. Rev. Lett. 70, 3319 (1993)

    Google Scholar 

  15. Esaki, L., Tsu, R.: Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Dev. 14(1), 61 (1970)

    Google Scholar 

  16. Ben Dahan, M., Peik, E., Reichel, J., Castin, Y., Salomon, C.: Bloch oscillations of atoms in an optical potential. Phys. Rev. Lett. 76, 4508 (1996)

    Google Scholar 

  17. Geiger, Z.A., Fujiwara, K.M., Singh, K., Senaratne, R., Rajagopal, S.V., Lipatov, M., Shimasaki, T., Driben, R., Konotop, V.V., Meier, T., Weld, D.M.: Observation and uses of position-space Bloch oscillations in an ultracold gas. Phys. Rev. Lett. 120, 213201 (2018)

    Google Scholar 

  18. Roati, G., de Mirandes, E., Ferlaino, F., Ott, H., Modugno, G., Inguscio, M.: Atom interferometry with trapped fermi gases. Phys. Rev. Lett. 92, 230402 (2004)

    Google Scholar 

  19. Pertsch, T., Dannberg, P., Elflein, W., Bräuer, A., Lederer, F.: Optical bloch oscillations in temperature tuned waveguide arrays. Phys. Rev. Lett. 83, 4752 (1999)

    Google Scholar 

  20. Morandotti, R., Peschel, U., Aitchison, J.S., Eisenberg, H.S., Silberberg, Y.: Experimental observation of linear and nonlinear optical Bloch oscillations. Phys. Rev. Lett. 83, 4756 (1999)

    Google Scholar 

  21. Sanchis-Alepuz, H., Kosevich, Y.A., Sánchez-Dehesa, J.: Acoustic analogue of electronic Bloch oscillations and resonant Zener tunneling in ultrasonic superlattices. Phys. Rev. Lett. 98, 134301 (2007)

    Google Scholar 

  22. Lazcano, Z., Arriaga, J., Aliev, G.N.: Experimental and theoretical demonstration of acoustic Bloch oscillations in porous silicon structures. J. Appl. Phys. 115(15), 154505 (2014)

    Google Scholar 

  23. Ferrari, G., Poli, N., Sorrentino, F., Tino, G.M.: Long-lived Bloch oscillations with Bosonic Sr atoms and application to gravity measurement at the micrometer scale. Phys. Rev. Lett. 97, 060402 (2006)

    Google Scholar 

  24. Müller, H., Peters, A., Chu, S.: A precision measurement of the gravitational redshift by the interference of matter waves. Nature 463(7283), 926 (2010)

    Google Scholar 

  25. Battesti, R., Cladé, P., Guellati-Khélifa, S., Schwob, C., Grémaud, B., Nez, F., Julien, L., Biraben, F.: Bloch oscillations of ultracold atoms: a tool for a metrological determination of \(h/{m}_{{\rm Rb}}\). Phys. Rev. Lett. 92, 253001 (2004)

    Google Scholar 

  26. Carusotto, I., Pitaevskii, L., Stringari, S., Modugno, G., Inguscio, M.: Sensitive measurement of forces at the micron scale using Bloch oscillations of ultracold atoms. Phys. Rev. Lett. 95, 093202 (2005)

    Google Scholar 

  27. Sorrentino, F., Alberti, A., Ferrari, G., Ivanov, V.V., Poli, N., Schioppo, M., Tino, G.M.: Quantum sensor for atom-surface interactions below \(10{\mu }\)m. Phys. Rev. A 79, 013409 (2009)

    Google Scholar 

  28. Breid, B.M., Witthaut, D., Korsch, H.J.: Manipulation of matter waves using Bloch and Bloch–Zener oscillations. N. J. Phys. 9(3), 62 (2007)

    Google Scholar 

  29. Ignatov, A.A., Schomburg, E., Renk, K.F., Schatz, W., Palmier, J.F., Mollot, F.: Response of a bloch oscillator to athz-eld. Annalen der Physik 506(3), 137 (1994)

    Google Scholar 

  30. Feise, M.W., Citrin, D.S.: Semiclassical theory of terahertz multiple-harmonic generation in semiconductor superlattices. Appl. Phys. Lett. 75(22), 3536 (1999)

    Google Scholar 

  31. Shimada, Y., Hirakawa, K., Odnoblioudov, M., Chao, K.A.: Terahertz conductivity and possible Bloch gain in semiconductor superlattices. Phys. Rev. Lett. 90, 046806 (2003)

    Google Scholar 

  32. Schubert, O., Hohenleutner, M., Langer, F., Urbanek, B., Lange, C., Huttner, U., Golde, D., Meier, T., Kira, M., Koch, S.W., Huber, R.: Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photonics 8(2), 119 (2014)

    Google Scholar 

  33. Unuma, T., Matsuda, A.: Temperature-dependent spectral linewidths of terahertz Bloch oscillations in biased semiconductor superlattices. Appl. Phys. Lett. 112(16), 162107 (2018)

    Google Scholar 

  34. Golenitskii, K.Y., Monakhov, A.M., Sankin, V.I.: Simulation of a terahertz laser in the Bloch oscillation mode. Tech. Phys. Lett. 44(12), 1150 (2018)

    Google Scholar 

  35. Shon, N.H., Nazareno, H.N.: On the dynamic localization in 1D tight-binding systems. J. Phys. Condens. Matter 4(47), L611 (1992)

    Google Scholar 

  36. Korsch, H., Mossmann, S.: An algebraic solution of driven single band tight binding dynamics. Phys. Lett. A 317(1), 54 (2003)

    MathSciNet  MATH  Google Scholar 

  37. Alberti, A., Ivanov, V.V., Tino, G.M., Ferrari, G.: Engineering the quantum transport of atomic wavefunctions over macroscopic distances. Nat. Phys. 5(8), 547 (2009)

    Google Scholar 

  38. Haller, E., Hart, R., Mark, M.J., Danzl, J.G., Reichsöllner, L., Nägerl, H.C.: Inducing transport in a dissipation-free lattice with super Bloch oscillations. Phys. Rev. Lett. 104, 200403 (2010)

    Google Scholar 

  39. Caetano, R.A., Lyra, M.L.: Wave packet dynamics under superposed DC and AC fields: super Bloch oscillations, resonant directed motion and delocalization. Phys. Lett. A 375(28), 2770 (2011)

    Google Scholar 

  40. Kudo, K., Monteiro, T.S.: Theoretical analysis of super-Bloch oscillations. Phys. Rev. A 83, 053627 (2011)

    Google Scholar 

  41. Dias, W.S., de Moura, F.A.B.F., Lyra, M.L.: Quantum entanglement and drifting generated by an ac field resonant with frequency-doubled Bloch oscillations of correlated particles. Phys. Rev. A 93, 023623 (2016)

    Google Scholar 

  42. Longhi, S., Della Valle, G.: Correlated super-Bloch oscillations. Phys. Rev. B 86, 075143 (2012)

    Google Scholar 

  43. Qin, C., Yuan, L., Wang, B., Fan, S., Lu, P.: Effective electric-field force for a photon in a synthetic frequency lattice created in a waveguide modulator. Phys. Rev. A 97, 063838 (2018)

    Google Scholar 

  44. Turker, Z., Yuce, C.: Super Bloch oscillation in a PT symmetric system. Phys. Lett. A 380(29), 2260 (2016)

    MathSciNet  Google Scholar 

  45. Pitaevskii, L.P.: Vortex lines in an imperfect Bose Gas. J. Exp. Theor. Phys. 13, 451 (1961)

    Google Scholar 

  46. Gross, E.P.: Structure of a quantized vortex in boson systems. Il Nuovo Cimento (1955–1965) 20(3), 454 (1961)

    MathSciNet  MATH  Google Scholar 

  47. Gross, E.P.: Hydrodynamics of a superfluid condensate. J. Math. Phys. 4(2), 195 (1963)

    Google Scholar 

  48. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999)

    Google Scholar 

  49. Wang, L.X., Dai, C.Q., Wen, L., Liu, T., Jiang, H.F., Saito, H., Zhang, S.G., Zhang, X.F.: Dynamics of vortices followed by the collapse of ring dark solitons in a two-component Bose–Einstein condensate. Phys. Rev. A 97, 063607 (2018)

    Google Scholar 

  50. Cardoso, W.B., Teixeira, R.M.P.: Scattering of solitons in binary Bose–Einstein condensates with spin-orbit and Rabi couplings. Nonlinear Dyn. 96(2), 1147 (2019)

    MATH  Google Scholar 

  51. Wen, L., Guo, H., Wang, Y.J., Hu, A.Y., Saito, H., Dai, C.Q., Zhang, X.F.: Effects of atom numbers on the miscibility-immiscibility transition of a binary Bose–Einstein condensate. Phys. Rev. A 101, 033610 (2020)

    Google Scholar 

  52. Chen, S.J., Ma, W.X., Lü, X.: Bäcklund transformation, exact solutions and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation. Commun. Nonlinear Sci. Numer. Simul. 83, 105135 (2020)

    MathSciNet  Google Scholar 

  53. Lü, X., Ma, W.X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85(2), 1217 (2016)

    MathSciNet  MATH  Google Scholar 

  54. Yin, Y.H., Ma, W.X., Liu, J.G., Lü, X.: Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction. Comput. Math. Appl. 76(6), 1275 (2018)

    MathSciNet  MATH  Google Scholar 

  55. Chen, Y.X., Xu, F.Q., Hu, Y.L.: Excitation control for three-dimensional Peregrine solution and combined breather of a partially nonlocal variable-coefficient nonlinear Schrödinger equation. Nonlinear Dyn. 95(3), 1957 (2019)

    MATH  Google Scholar 

  56. Dai, C.Q., Zhang, J.F.: Controlling effect of vector and scalar crossed double-Ma breathers in a partially nonlocal nonlinear medium with a linear potential. Nonlinear Dyn. 100(2), 1621 (2020)

    Google Scholar 

  57. Trombettoni, A., Smerzi, A.: Discrete solitons and breathers with dilute Bose–Einstein condensates. Phys. Rev. Lett. 86, 2353 (2001)

    Google Scholar 

  58. Domínguez-Adame, F.: Beyond the semiclassical description of Bloch oscillations. Eur. J. Phys. 31(3), 639 (2010)

    MATH  Google Scholar 

  59. Datta, P.K., Jayannavar, A.M.: Effect of nonlinearity on the dynamics of a particle in field-induced systems. Phys. Rev. B 58, 8170 (1998)

    Google Scholar 

  60. Buarque, A., Dias, W.: Creation and mobility of self-trapped electronic states in nonlinear chains. Commun. Nonlinear Sci. Numer. Simul. 63, 365 (2018)

    MathSciNet  Google Scholar 

  61. Pereira, A., Lyra, M., de Moura, F., Ranciaro Neto, A., Dias, W.: Nonlinear wave-packet dynamics resonantly driven by AC and DC fields. Commun. Nonlinear Sci. Numer. Simul. 64, 89–97 (2018)

    Google Scholar 

  62. Scott, A.: Davydov’s soliton. Phys. Rep. 217(1), 1 (1992)

    MATH  Google Scholar 

  63. Holstein, T.: Studies of polaron motion: Part I. The molecular-crystal model. Ann. Phys. 8(3), 325 (1959)

    MATH  Google Scholar 

  64. Holstein, T.: Studies of polaron motion: Part II. The “small” polaron. Ann. Phys. 8(3), 343 (1959)

    MATH  Google Scholar 

  65. de Moura, F.A.B.F., Gléria, I., dos Santos, I.F., Lyra, M.L.: Wave-packet dynamics in chains with delayed electronic nonlinear response. Phys. Rev. Lett. 103, 096401 (2009)

    Google Scholar 

  66. Dias, W.S., Lyra, M.L., de Moura, F.A.B.F.: Self-trapping of interacting electrons in crystalline nonlinear chains. Eur. Phys. J. B 85(1), 7 (2012)

    Google Scholar 

  67. Morais, D., Lyra, M., de Moura, F., Dias, W.: The self-trapping transition of one-magnon excitations coupled to acoustic phonons. J. Magn. Magn. Mater. 506, 166798 (2020)

    Google Scholar 

Download references

Acknowledgements

F.S. Passos is grateful to J.G. Silva Junior and T.P. Lobo for the support and useful discussions. This work was partially supported by CNPq (Brazilian National Council for Scientific and Technological Development) and FAPEAL (Alagoas State Agency).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. S. Dias.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passos, F.S., Dias, W.S. From super-Bloch oscillations to sudden self-trapping in Bose–Einstein condensates with inter-atomic interactions. Nonlinear Dyn 102, 329–337 (2020). https://doi.org/10.1007/s11071-020-05979-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05979-8

Keywords

Navigation