Skip to main content
Log in

Transformed nonlinear waves, state transitions and modulation instability in a three-component AB model for the geophysical flows

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we investigate a three-component AB model, which characterizes the baroclinic instability processes in the geophysical flows. Via the Darboux transformation, the breather solutions are derived. Then, we study the state transition and find that the breather solutions can be transformed into different kinds of stationary nonlinear waves, including the anti-dark soliton, multi-peak soliton, M-shaped soliton, W-shaped solitons and periodic waves. Moreover, by virtue of the second-order transformed solution, various nonlinear wave complexes are presented. Finally, we unveil the relationship between the modulation instability and state transition and show the existence regions for the transformed waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Pelinovsky, E., Kharif, C.: Extreme Ocean Waves. Springer, Berlin (2008)

    MATH  Google Scholar 

  2. Kharif, C., Pelinovsky, E.: Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B Fluids 22, 603 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Agrawal, G.P.: Nonlinear Fiber Optics, 3rd edn. Academic Press, San Diego, CA (2002)

    MATH  Google Scholar 

  4. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142 (1973)

    Google Scholar 

  5. Radhakrishnan, R., Lakshmanan, M.: Exact soliton solutions to coupled nonlinear Schrödinger equations with higher-order effects. Phys. Rev. E 54, 2949 (1996)

    MathSciNet  Google Scholar 

  6. Radha, R., Vinayagam, P.S., Porsezian, K.: Rotation of the trajectories of bright solitons and realignment of intensity distribution in the coupled nonlinear Schrödinger equation. Phys. Rev. E 88, 032903 (2013)

    Google Scholar 

  7. Moslem, W.M., Shukla, P.K., Eliasson, B.: Surface plasma rogue waves. Europhys. Lett. 96, 25002 (2011)

    Google Scholar 

  8. Wen, L., Li, L., Li, Z.D., Song, S.W., Zhang, X.F., Liu, W.M.: Matter rogue wave in Bose-Einstein condensates with attractive atomic interaction. Eur. Phys. J. D 64, 473 (2011)

    Google Scholar 

  9. Vinayagam, P.S., Radha, R., Porsezian, K.: Taming rogue waves in vector Bose–Einstein condensates. Phys. Rev. E 88, 042906 (2013)

    Google Scholar 

  10. Wazwaz, A.M.: A two-mode modified KdV equation with multiple soliton solutions. Appl. Math. Lett. 70, 1 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Wazwaz, A.M.: Abundant solutions of various physical features for the (2+1)-dimensional modified KdV-Calogero–Bogoyavlenskii–Schiff equation. Nonlinear Dyn. 89, 1727 (2017)

    MathSciNet  Google Scholar 

  12. Wazwaz, A.M.: Multiple soliton solutions and other exact solutions for a two-mode KdV equation. Math. Methods Appl. Sci. 40, 2277 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83, 1529 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Wazwaz, A.M., El-Tantawy, S.A.: Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirotas method. Nonlinear Dyn. 88, 3017 (2017)

    MathSciNet  Google Scholar 

  15. Wazwaz, A.M.: A study on a two-wave mode Kadomtsev–Petviashvili equation: conditions for multiple soliton solutions to exist. Math. Methods Appl. Sci. 40, 4128 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Xie, X.Y., Yang, S.K., Ai, C.H., Kong, L.C.: Integrable turbulence for a coupled nonlinear Schrödinger system. Phys. Lett. A 384, 126119 (2020)

    Google Scholar 

  17. Xie, X.Y., Liu, X.B.: Elastic and inelastic collisions of the semirational solutions for the coupled Hirota equations in a birefringent fiber. Appl. Math. Lett. 105, 106291 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Wang, X., Wei, J., Geng, X.G.: Rational solutions for a (3+1)-dimensional nonlinear evolution equation. Commun. Nonlinear Sci. Numer. Simul. 83, 105116 (2020)

    MathSciNet  Google Scholar 

  19. Wei, J., Geng, X.G., Zeng, X.: The Riemann theta function solutions for the hierarchy of Bogoyavlensky lattices. Trans. Am. Math. Soc. 371, 1483 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Wang, X., Wei, J., Wang, L., Zhang, J.L.: Baseband modulation instability, rogue waves and state transitions in a deformed Fokas–Lenells equation. Nonlinear Dyn. 97, 343 (2019)

    MATH  Google Scholar 

  21. Lu, Z.S., Chen, Y.N.: Construction of rogue wave and lump solutions for nonlinear evolution equations. Eur. Phys. J. B 88, 187 (2015)

    MathSciNet  Google Scholar 

  22. Zhang, Y., Zhao, H.Q., Li, J.B.: The long wave limiting of the discrete nonlinear evolution equations. Chaos Solitons Fractals 42, 2965 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054 (2007)

    Google Scholar 

  24. Onorato, M., Residori, S., Bortolozzo, U., Montina, A., Arecchi, F.T.: Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528, 47 (2013)

    MathSciNet  Google Scholar 

  25. Akhmediev, N., Sotocrespo, J.M., Ankiewicz, A.: Extreme waves that appear from nowhere: On the nature of rogue waves. Phys. Lett. A 373, 2137 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Du, Z., Tian, B., Chai, H.P., Sun, Y., Zhao, X.H.: Rogue waves for the coupled variable-coefficient fourth-order nonlinear Schrödinger equations in an inhomogeneous optical fiber. Chaos Solitons Fractals 109, 90 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Wu, X.Y., Tian, B., Liu, L., Sun, Y.: Rogue waves for a variable-coefficient Kadomtsev–Petviashvili equation in fluid mechanics. Comput. Math. Appl. 76, 215 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Akhmediev, N.N., Korneev, V.I.: Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69, 1089 (1986)

    MATH  Google Scholar 

  29. Kuznetsov, E.A.: Solitons in Parametrically Unstable Plasma. Dokl. Akad. Nauk SSSR 236, 575 (1977)

    Google Scholar 

  30. Ma, Y.C.: The Perturbed Plane-Wave Solutions of the Cubic Schrödinger Equation. Stud. Appl. Math. 60, 43 (1979)

    MathSciNet  MATH  Google Scholar 

  31. Mahnke, C., Mitschke, F.: Possibility of an Akhmediev breather decaying into solitons. Phys. Rev. A 85, 033808 (2012)

    Google Scholar 

  32. Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790 (2010)

    Google Scholar 

  33. Shrira, V.I., Geogjaev, V.V.: What makes the Peregrine soliton so special as a prototype of freak waves. J. Eng. Math. 67, 11 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Peregrine, D.H.: Water waves, nonlinear schrödinger equations and their solutions. J. Aust. Math. Soc. Ser. B 25, 16 (1983)

    MATH  Google Scholar 

  35. Benjamin, T.B., Feir, J.E.: The disintegration of wavetrains on deep water. Part 1. Theory. J. Fluid Mech. 27, 417 (1967)

    MATH  Google Scholar 

  36. Bespalov, V.I., Talanov, V.I.: Filamentary structure of light beams in nonlinear liquids. JETP Lett. 3, 307 (1966)

    Google Scholar 

  37. Baronio, F., Conforti, M., Degasperis, A., Lombardo, S., Onorato, M., Wabnitz, S.: Vector rogue waves and baseband modulation instability in the defocusing regime. Phys. Rev. Lett. 113, 034101 (2014)

    Google Scholar 

  38. Baronio, F., Chen, S.H., Grelu, P., Wabnitz, S., Conforti, M.: Baseband modulation instability as the origin of rogue waves. Phys. Rev. A 91, 033804 (2015)

    Google Scholar 

  39. Chen, S.H., Baronio, F., Sotocrespo, J.M., Grelu, P., Conforti, M., Wabnitz, S.: Optical rogue waves in parametric three-wave mixing and coherent stimulated scattering. Phys. Rev. A 92, 033847 (2015)

    Google Scholar 

  40. Zhao, L.C., Ling, L.M.: Quantitative relations between modulational instability and several well-known nonlinear excitations. J. Opt. Soc. Am. B 33, 850 (2016)

    Google Scholar 

  41. Gino, B., Sitai, L., Dionyssios, M.: Soliton trapping, transmission, and wake in modulationally unstable media. Phys. Rev. E 98, 042211 (2018)

    Google Scholar 

  42. Adrien, E.K., Pierre, S., Gennady, E., Stéphane, R.: Nonlinear evolution of the locally induced modulational instability in fiber optics. Phys. Rev. Lett. 122, 054101 (2019)

    Google Scholar 

  43. Chowdury, A., Krolikowski, W.: Breather-to-soliton transformation rules in the hierarchy of nonlinear Schrödinger equations. Phys. Rev. E 95, 062226 (2017)

    MathSciNet  Google Scholar 

  44. Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy. Phys. Rev. E 91, 032928 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Li, P., Wang, L., Kong, L.Q., Wang, X., Xie, Z.Y.: Nonlinear waves in the modulation instability regime for the fifth-order nonlinear Schrödinger equation. Appl. Math. Lett. 85, 110 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Wang, L., Zhang, J.H., Wang, Z.Q., Liu, C., Li, M., Qi, F.H., Guo, R.: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation. Phys. Rev. E 93, 012214 (2016)

    MathSciNet  Google Scholar 

  47. Wang, L., Zhang, J.H., Liu, C., Li, M., Qi, F.H.: Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schrödinger equation with higher-order effects. Phys. Rev. E 93, 062217 (2016)

    MathSciNet  Google Scholar 

  48. Zhang, J.H., Wang, L., Liu, C.: Superregular Breathers, Characteristics of Nonlinear Stage of Modulation Instability Induced by Higher-order Effects. Proc. R. Soc. A 473, 20160681 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Liu, C., Yang, Z.Y., Zhao, L.C., Yang, W.L.: State transition induced by higher-order effects and background frequency. Phys. Rev. E 91, 022904 (2015)

    Google Scholar 

  50. Liu, C., Yang, Z.Y., Zhao, L.C., Yang, W.L.: Transition, coexistence, and interaction of vector localized waves arising from higher-order effects. Ann. Phys. 362, 130 (2015)

    MathSciNet  Google Scholar 

  51. Ren, Y., Yang, Z.Y., Liu, C., Yang, W.L.: Different types of nonlinear localized and periodic waves in an erbium-doped fiber system. Phys. Lett. A 379, 2991 (2015)

    Google Scholar 

  52. Duan, L., Zhao, L.C., Xu, W.H., Liu, C., Yang, Z.Y., Yang, W.L.: Soliton excitations on a continuous-wave background in the modulational instability regime with fourth-order effects. Phys. Rev. E 95, 042212 (2017)

    MathSciNet  Google Scholar 

  53. Wang, L., Wu, X., Zhang, H.Y.: Superregular breathers and state transitions in a resonant erbium-doped fiber system with higher-order effects. Phys. Lett. A 382, 2650 (2018)

    MathSciNet  Google Scholar 

  54. Wang, L., Liu, C., Wu, X., Wang, X., Sun, W.R.: Dynamics of superregular breathers in the quintic nonlinear Schrödinger equation. Nonlinear Dyn. 94, 977 (2018)

    Google Scholar 

  55. Liu, C., Akhmediev, N.: Super-regular breathers in nonlinear systems with self-steepening effect. Phys. Rev. E 100, 062201 (2019)

    MathSciNet  Google Scholar 

  56. Tan, B., Boyd, J.P.: Envelope solitary waves and periodic waves in the AB equations. Stud. Appl. Math. 109, 67 (2002)

    MathSciNet  MATH  Google Scholar 

  57. Moroz, I.M., Brindley, J.: Evolution of baroclinic wave packets in a flow with continuous shear and stratification. Proc. R. Soc. London 377, 379 (1981)

    MathSciNet  MATH  Google Scholar 

  58. Gibbon, J.D., James, I.N., Moroz, I.M.: An example of soliton behavior in a rotating baroclinic fluid. Proc. R. Soc. London 367, 219 (1979)

    MATH  Google Scholar 

  59. Wu, C.F., Grimshaw, R.H.J., Chow, K.W., Chan, H.N.: A coupled AB system: Rogue waves and modulation instabilities. Chaos 25, 103113 (2015)

    MathSciNet  MATH  Google Scholar 

  60. Dodd, R.K., Eilkck, C.J., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic Press, New York (1982)

    Google Scholar 

  61. Kamchatnov, A.M., Pavlov, M.V.: Periodic solutions and Whitham equations for the AB system. J. Phys. A 28, 3279 (1995)

    MathSciNet  MATH  Google Scholar 

  62. Guo, R., Hao, H.Q., Zhang, L.L.: Dynamic behaviors of the breather solutions for the AB system in fluid mechanics. Nonlinear Dyn. 74, 701 (2013)

    MathSciNet  Google Scholar 

  63. Tan, B.K., Boyd, J.P.: Envelope solitary waves and periodic waves in the AB equations. Stud. Appl. Math. 109, 67 (2002)

    MathSciNet  MATH  Google Scholar 

  64. Wang, X., Li, Y.Q., Huang, F., Chen, Y.: Rogue wave solutions of AB system. Commun. Nonlinear Sci. Numer. Simul. 20, 434 (2015)

    MathSciNet  MATH  Google Scholar 

  65. Wang, L., Wang, Z.Z., Jiang, D.Y., Qi, F.H., Guo, R.: Semirational solutions and baseband modulational instability of the AB system in fluid mechanics. Eur. Phys. J. Plus 130, 199 (2015)

    Google Scholar 

  66. Su, J.J., Gao, Y.T., Ding, C.C.: Darboux transformations and rogue wave solutions of a generalized AB system for the geophysical flows. Appl. Math. Lett. 88, 201 (2019)

    MathSciNet  MATH  Google Scholar 

  67. Xie, X.Y., Meng, G.Q.: Dark-soliton collisions for a coupled AB system in the geophysical fluids or nonlinear optics. Mod. Phys. Lett. B 32, 1850039 (2018)

    MathSciNet  Google Scholar 

  68. Xie, X.Y., Meng, G.Q.: Multi-dark soliton solutions for a coupled AB system in the geophysical flows. Appl. Math. Lett. 92, 201 (2019)

    MathSciNet  MATH  Google Scholar 

  69. Duan, L., Liu, C., Zhao, L.C., Yang, Z.Y.: Quantitative relations between fundamental nonlinear waves and modulation instability. Acta Phys. Sin. 69, 010501 (2020)

    Google Scholar 

  70. Liu, C., Yang, Z.Y., Zhao, L.C., Duan, L., Yang, G.Y., Yang, W.L.: Symmetric and asymmetric optical multipeak solitons on a continuous wave background in the femtosecond regime. Phys. Rev. E 94, 042221 (2016)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11875126, 11905061 and 11705290), Key scientific and technological projects in Henan Province (202102210363), Young Scholar Foundation of Zhongyuan University of Technology (2018XQG16). Lei Wang came up with the idea of this paper. Lei Wang was responsible for all physical analysis. Lei Wang and Han-Song Zhang wrote this paper. Han-Song Zhang was responsible for all simulations and calculations. Xin Wang and Xi-Yang Xie polished the language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HS., Wang, L., Wang, X. et al. Transformed nonlinear waves, state transitions and modulation instability in a three-component AB model for the geophysical flows. Nonlinear Dyn 102, 349–362 (2020). https://doi.org/10.1007/s11071-020-05964-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05964-1

Keywords

Navigation