Skip to main content

Advertisement

Log in

Dual-mode global stabilization of high-order saturated integrator chains: LMI-based MPC combined with a nested saturated feedback

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper considers the problem of high-performance global stabilization of an integrator chain via a bounded control at the presence of input disturbance. While nested saturated feedback (NSF) is known as the most inspiring existing solution in the literature, we shall highlight the inherent shortcomings of this approach which cause a poor performance in terms of convergence rate. Then, a novel dual-mode control scheme combining an improved NSF law with a linear matrix inequality (LMI)-based model predictive controller (MPC) is developed to overcome the weaknesses of pure NSF. By offline calculations, a set of nested robust invariant attraction regions and their attributed feedback gains are computed respecting the known bound for disturbance. In online implementation, an improved NSF law is adopted (as the first mode) to bring states within the largest invariant set. The proposed LMI-based state feedback law is applied thereafter (as the second mode) to bring state vector toward the origin with a fast convergence rate. In both modes, the well-known extended state observer (ESO) is employed to effectively suppress the external disturbance. The superiority of the proposed globally stabilizing scheme in terms of faster convergence and improved disturbance rejection ability is demonstrated comparing performances of foremost existing solutions in case of a triple integrator chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdessameud, A., Tayebi, A.: Distributed consensus algorithms for a class of high-order multi-agent systems on directed graphs. IEEE Trans. Autom. Control 63(10), 3464–3470 (2018)

    Article  MathSciNet  Google Scholar 

  2. Burlion, L., Malisoff, M., Mazenc, F.: Stabilization for a chain of saturating integrators arising in the visual landing of aircraft with sampling. Syst. Control Lett. 135, 104574 (2020)

    Article  MathSciNet  Google Scholar 

  3. Madonski, R., Shao, S., Zhang, H., Gao, Z., Yang, J., Li, S.: General error-based active disturbance rejection control for swift industrial implementations. Control Eng. Pract. 84, 218–229 (2019)

    Article  Google Scholar 

  4. Cai, Z., Lou, J., Zhao, J., Wu, K., Liu, N., Wang, Y.X.: Quadrotor trajectory tracking and obstacle avoidance by chaotic grey wolf optimization-based active disturbance rejection control. Mech. Syst. Signal Process. 128, 636–654 (2019)

    Article  Google Scholar 

  5. Ahi, B., Haeri, M.: Novel nested saturated feedback scheme for CLOS guidance via cubature Kalman filter. In: International Conference on Integrated Navigation Systems, pp. 1–6, (2018)

  6. Yang, H., Yu, Y., Zhang, J.: Angle tracking of a pneumatic muscle actuator mechanism under varying load conditions. Control Eng. Pract. 61, 1–10 (2017)

    Article  Google Scholar 

  7. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  8. Teel, A.: Global stabilization and restricted tracking for multiple integrators with bounded controls. Syst. Control Lett. 18(3), 165–171 (1992)

    Article  MathSciNet  Google Scholar 

  9. Marchand, N.: Further results on global stabilization for multiple integrators with bounded controls. In: IEEE Conference on Decision and Control, pp. 4440–4444, (2003)

  10. Marchand, N., Hably, A.: Global stabilization of multiple integrators with bounded controls. Automatica 41(12), 2147–2152 (2005)

    Article  MathSciNet  Google Scholar 

  11. Zhou, B., Duan, G.-R.: Global stabilization of linear systems via bounded controls. Syst. Control Lett. 58(1), 54–61 (2009)

    Article  MathSciNet  Google Scholar 

  12. Wang, X., Saberi, A., Stoorvogel, A.A., Grip, H.F.: Control of a chain of integrators subject to actuator saturation and disturbances. Int. J. Robust Nonlinear Control 22(14), 1562–1570 (2012)

    Article  MathSciNet  Google Scholar 

  13. Gayaka, S., Lu, L., Yao, B.: Global stabilization of a chain of integrators with input saturation and disturbances: a new approach. Automatica 48(7), 1389–1396 (2012)

    Article  MathSciNet  Google Scholar 

  14. Chitour, Y., Harmouche, M., Laghrouche, S.: \(l_p\)-stabilization of integrator chains subject to input saturation using lyapunov-based homogeneous design. SIAM J. Control Optim. 53, 2406–2423 (2015)

    Article  MathSciNet  Google Scholar 

  15. Chalanga, A., Plestan, F.: Finite time stabilization of an uncertain chain of integrators by integral sliding mode approach. IFAC-PapersOnLine 50, 9613–9618 (2017)

    Article  Google Scholar 

  16. Tian, B., Lu, H., Zuo, Z., Wang, H.: Fixed-time stabilization of high-order integrator systems with mismatched disturbances. Nonlinear Dyn. 94(4), 2889–2899 (2018)

    Article  Google Scholar 

  17. Amini, S., Ahi, B., Haeri, M.: Control of high order integrator chain systems subjected to disturbance and saturated control: a new adaptive scheme. Automatica 100, 108–113 (2019)

    Article  MathSciNet  Google Scholar 

  18. Kothare, M.V., Balakrishnan, V., Morari, M.: Robust constrained model predictive control using linear matrix inequalities. Automatica 32(10), 1361–1379 (1996)

    Article  MathSciNet  Google Scholar 

  19. Moradi, S.M., Akbari, A., Mirzaei, M.: An off-line LMI-based robust model predictive control of vehicle active suspension system with parameter uncertainty. Trans. Inst. Meas. Control 41(6), 1699–1711 (2019)

    Article  Google Scholar 

  20. Wang, X., Li, S., Tang, T.: Robust optimal predictive control of heavy haul train under imperfect communication. ISA Trans. 91, 52–65 (2019)

    Article  Google Scholar 

  21. Longge, Z., Xiangjie, L.: The synchronization between two discrete-time chaotic systems using active robust model predictive control. Nonlinear Dyn. 74(4), 905–910 (2013)

    Article  MathSciNet  Google Scholar 

  22. Trodden, P.: A one-step approach to computing a polytopic robust positively invariant set. IEEE Trans. Autom. Control 61(12), 4100–4105 (2016)

    Article  MathSciNet  Google Scholar 

  23. Teng, L., Wang, Y., Cai, W., Li, H.: Robust fuzzy model predictive control of discrete-time takagi-sugeno systems with nonlinear local models. IEEE Trans. Fuzzy Syst. 26(5), 2915–2925 (2018)

    Article  Google Scholar 

  24. Yu, S., Maier, C., Chen, H., Allgöwer, F.: Tube MPC scheme based on robust control invariant set with application to Lipschitz nonlinear systems. Syst. Control Lett. 62(2), 194–200 (2013)

    Article  MathSciNet  Google Scholar 

  25. Yu, S., Zhou, Y., Qu, T., Xu, F., Ma, Y.: Control invariant sets of linear systems with bounded disturbances. Int. J. Control Autom. Syst. 16(2), 622–629 (2018)

    Article  Google Scholar 

  26. Hu, J., Ding, B.: An efficient off-line implementation for output feedback min-max MPC. Int. J. Robust Nonlinear Control 29(2), 492–506 (2019)

    Article  MathSciNet  Google Scholar 

  27. Shokrollahi, A., Shamaghdari, S.: Off-line robust model predictive control for lipschitz non-linear systems using polyhedral invariant sets. Asian J. Control 21(6), 1–9 (2019)

    MathSciNet  Google Scholar 

  28. Zhou, B., Duan, G.R.: A novel nested non-linear feedback law for global stabilisation of linear systems with bounded controls. Int. J. Control 81(9), 1352–1363 (2008)

    Article  MathSciNet  Google Scholar 

  29. Ahi, B., Haeri, M.: Linear active disturbance rejection control from the practical aspects. IEEE/ASME Trans. Mechatron. 23, 2909–2919 (2018)

    Article  Google Scholar 

  30. Yu, S., Böhm, C., Chen, H., Allgöwer, F.: Robust model predictive control with disturbance invariant sets, In: American Control Conference, pp. 6262–6267, (2010)

  31. Gahinet, P., Nemirovskii, A., Laub, A.J., Chilali, M.: The LMI control toolbox. IEEE Conf. Decis. Control 3, 2038–2041 (1994)

    Google Scholar 

  32. Guo, B., Zhao, Z.: Active Disturbance Rejection Control for Nonlinear Systems: An Introduction. Wiley, London (2016)

    Book  Google Scholar 

Download references

Funding

This work was funded by the Iran National Science Foundation (INSF) under Grant number 98017237.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Haeri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proof of Lemma 1

Appendix A: Proof of Lemma 1

The induction method is followed. For \(i=1\), computing derivative of \(z_1={\tilde{x}}_1+\sigma _{0}^{'}(z_{0})\) and applying (13), leads to \({\dot{z}}_1=z_2-\sigma _{1}^{'}(z_{1})\). Also, for \(i=2\) one can show

$$\begin{aligned} {\dot{z}}_2= & {} \dot{{\tilde{x}}}_2 + \frac{\partial \sigma _{1}^{'}}{\partial z_{1}}{\dot{z}}_1 =\underbrace{z_3- \sigma _{2}^{'}(z_2)}_{\dot{{\tilde{x}}}_2={\tilde{x}}_3}\nonumber \\&+\frac{\partial \sigma _{1}^{'}}{\partial z_{1}}(z_2-\sigma _1^{'}(z_1)). \end{aligned}$$
(44)

For \(i=k\) assume \({\dot{z}}_k\) can be calculated as

$$\begin{aligned} {\dot{z}}_k= & {} z_{k+1}-\sigma _k^{'}(z_k)\nonumber \\&+\sum _{j=1}^{k-1}\prod _{r=1}^{j}\frac{\partial \sigma _{k-r}^{'}}{\partial z_{k-r}}\big (z_{k-j+1}-\sigma _{k-j}^{'}(z_{k-j})\big ), \end{aligned}$$
(45)

for \(\forall k\le n-2\). Now, to complete induction procedure, it is required to prove

$$\begin{aligned} {\dot{z}}_{k+1}= & {} z_{k+2}-\sigma _{k+1}^{'}(z_{k+1})\nonumber \\&+\sum _{j=1}^{k}\prod _{r=1}^{j}\frac{\partial \sigma _{k+1-r}^{'}}{\partial z_{k+1-r}}\nonumber \\&\big (z_{k-j+2}-\sigma _{k-j+1}^{'}(z_{k-j+1})\big ). \end{aligned}$$
(46)

To that end, taking derivative from \(z_{k+1}\) gives

$$\begin{aligned} {\dot{z}}_{k+1}= & {} \dot{{\tilde{x}}}_{k+1}+\frac{\partial \sigma _{k}^{'}}{\partial z_{k}}{\dot{z}}_k =\underbrace{z_{k+2}- \sigma _{k+1}^{'}(z_{k+1})}_{\dot{{\tilde{x}}}_{k+1}={\tilde{x}}_{k+2}}\nonumber \\&+\frac{\partial \sigma _{k}^{'}}{\partial z_{k}}{\dot{z}}_k, \end{aligned}$$
(47)

where incorporating (45) and (47) with some rearrangements results in (46) which completes the induction procedure showing validity of (16). As that last step, taking derivative from \(z_{n}={\tilde{x}}_{n}+\sigma _{n-1}^{'}(z_{n-1})\) gives

$$\begin{aligned} {\dot{z}}_{n}= & {} \dot{{\tilde{x}}}_{n}+\frac{\partial \sigma _{n-1}^{'}}{\partial z_{n-1}}{\dot{z}}_{n-1}\nonumber \\= & {} \underbrace{\sigma _{u_m}(u)+{\tilde{d}}-{\tilde{y}}_d^{(n)}}_{\dot{{\tilde{x}}}_{n}} +\frac{\partial \sigma _{n-1}^{'}}{\partial z_{n-1}}{\dot{z}}_{n-1}. \end{aligned}$$
(48)

Substituting (16) for \(i=n-1\) in (48), leads to (15).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adelipour, S., Ahi, B. & Haeri, M. Dual-mode global stabilization of high-order saturated integrator chains: LMI-based MPC combined with a nested saturated feedback. Nonlinear Dyn 102, 211–222 (2020). https://doi.org/10.1007/s11071-020-05957-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05957-0

Keywords

Navigation