Skip to main content
Log in

Resonance induced by mixed couplings in a three-node motif

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Inspired by the coexistence of excitatory and inhibitory neurons in real neural networks, we propose a motif of three coupled nodes, one with positive coupling and two with negative couplings, for signal amplification. Utilizing the bistable overdamped oscillator as well as the excitable neuron models, we show that the response of the motif is optimized for an intermediate range of coupling strength, i.e., coupling-induced resonance. Through theoretical analyses, we find that the underlying mechanism for the resonance is an abrupt pitchfork bifurcation caused by the mixed positive and negative couplings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hänggi, P.: Stochastic resonance in biology how noise can enhance detection of weak signals and help improve biological information processing. ChemPhysChem 3(3), 285–290 (2002)

    Article  Google Scholar 

  2. Schnupp, J.W.H., Carr, C.E.: On hearing with more than one ear: lessons from evolution. Nat. Neurosci. 12(6), 692 (2009)

    Article  Google Scholar 

  3. Fenton, M.B.: The world through a bat’s ear. Science 333(6042), 528–529 (2011)

    Article  Google Scholar 

  4. Collins, J.J.: Fishing for function in noise. Nature 402(6759), 241–242 (1999)

    Article  Google Scholar 

  5. McKenna, M.F.: The sounds around us. Phys. Today 73(1), 28–34 (2020)

    Article  Google Scholar 

  6. Deng, B., Wang, J., Wei, X., Tsang, K.M., Chan, W.L.: Vibrational resonance in neuron populations. Chaos 20(1), 013113 (2010)

    Article  Google Scholar 

  7. McDonnell, M.D., Ward, L.M.: The benefits of noise in neural systems: bridging theory and experiment. Nat. Rev. Neurosci. 12(7), 415–425 (2011)

    Article  Google Scholar 

  8. Lü, M., Wang, C., Ren, G., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–1490 (2016)

    Article  Google Scholar 

  9. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569–1578 (2017)

    Article  MathSciNet  Google Scholar 

  10. Han, X., Zhang, Y., Bi, Q., Kurths, J.: Two novel bursting patterns in the Duffing system with multiple-frequency slow parametric excitations. Chaos 28(4), 043111 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70(1), 223 (1998)

    Article  Google Scholar 

  12. Lindner, B., García-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392(6), 321–424 (2004)

    Article  Google Scholar 

  13. Wang, Q., Perc, M., Duan, Z., Chen, G.: Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys. Rev. E 80(2), 026206 (2009)

    Article  Google Scholar 

  14. Liang, X., Dhamala, M., Zhao, L., Liu, Z.: Phase-disorder-induced double resonance of neuronal activity. Phys. Rev. E 82(1), 010902(R) (2010)

    Article  Google Scholar 

  15. Lindner, J.F., Meadows, B.K., Ditto, W.L., Inchiosa, M.E., Bulsara, A.R.: Array enhanced stochastic resonance and spatiotemporal synchronization. Phys. Rev. Lett. 75(1), 3 (1995)

    Article  Google Scholar 

  16. Zhou, C., Kurths, J., Hu, B.: Array-enhanced coherence resonance: nontrivial effects of heterogeneity and spatial independence of noise. Phys. Rev. Lett. 87(9), 098101 (2001)

    Article  Google Scholar 

  17. Pikovsky, A., Zaikin, A., de La Casa, M.A.: System size resonance in coupled noisy systems and in the Ising model. Phys. Rev. Lett. 88(5), 050601 (2002)

    Article  Google Scholar 

  18. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)

    Article  MATH  Google Scholar 

  19. Bar-Yam, Y., Epstein, I.R.: Response of complex networks to stimuli. Proc. Natl. Acad. Sci. U.S.A. 101(13), 4341–4345 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)

    Article  Google Scholar 

  21. Zhou, J., Zhou, Y., Liu, Z.: Amplification of signal response at an arbitrary node of a complex network. Phys. Rev. E 83(4), 046107 (2011)

    Article  Google Scholar 

  22. Gao, Z., Hu, B., Hu, G.: Stochastic resonance of small-world networks. Phys. Rev. E 65(1), 016209 (2001)

    Article  Google Scholar 

  23. Perc, M.: Stochastic resonance on excitable small-world networks via a pacemaker. Phys. Rev. E 76(6), 066203 (2007)

    Article  MathSciNet  Google Scholar 

  24. Acebrón, J.A., Lozano, S., Arenas, A.: Amplified signal response in scale-free networks by collaborative signaling. Phys. Rev. Lett. 99(12), 128701 (2007)

    Article  Google Scholar 

  25. Liu, Z., Munakata, T.: Scale-free topology-induced double resonance in networked two-state systems. Phys. Rev. E 78(4), 046111 (2008)

    Article  Google Scholar 

  26. Lu, F., Liu, Z.: Frequency sensitivity of signal detection in scale-free networks. Chin. Phys. Lett. 26(4), 040503 (2009)

    Article  Google Scholar 

  27. Tessone, C.J., Mirasso, C.R., Toral, R., Gunton, J.D.: Diversity-induced resonance. Phys. Rev. Lett. 97(19), 194101 (2006)

    Article  Google Scholar 

  28. Gassel, M., Glatt, E., Kaiser, F.: Doubly diversity-induced resonance. Phys. Rev. E 76(1), 016203 (2007)

    Article  Google Scholar 

  29. Shen, C., Chen, H., Zhang, J.: Amplified signal response by neuronal diversity on complex networks. Chin. Phys. Lett. 25(5), 1591 (2008)

    Article  Google Scholar 

  30. Wu, L., Zhu, S., Luo, X.: Diversity-induced resonance on weighted scale-free networks. Chaos 20(3), 033113 (2010)

    Article  MATH  Google Scholar 

  31. Martins, T.V., Livina, V.N., Majtey, A.P., Toral, R.: Resonance induced by repulsive interactions in a model of globally coupled bistable systems. Phys. Rev. E 81(4), 041103 (2010)

    Article  Google Scholar 

  32. Hoge, G.J., Davidson, K.G.V., Yasumura, T., Castillo, P.E., Rash, J.E., Pereda, A.E.: The extent and strength of electrical coupling between inferior olivary neurons is heterogeneous. J. Neurophysiol. 105(3), 1089–1101 (2011)

    Article  Google Scholar 

  33. Liang, X., Zhao, L., Liu, Z.: Optimal signal amplification in weighted scale-free networks. Chaos 22(2), 023128 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, C., Liang, X.: Resonance induced by coupling diversity in globally coupled bistable oscillators. Phys. Rev. E 100(3), 032206 (2019)

    Article  MathSciNet  Google Scholar 

  35. Zaikin, A., García-Ojalvo, J., Báscones, R., Ullner, E., Kurths, J.: Doubly stochastic coherence via noise-induced symmetry in bistable neural models. Phys. Rev. Lett. 90(3), 030601 (2003)

    Article  Google Scholar 

  36. Liang, X., Yanchuk, S., Zhao, L.: Gating-signal propagation by a feed-forward neural motif. Phys. Rev. E 88(1), 012910 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

X.L. was supported by the NNSF of China under Grant No. 11305078. We thank the anonymous reviewers for critical comments that helped improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhang, X. & Liang, X. Resonance induced by mixed couplings in a three-node motif. Nonlinear Dyn 102, 635–642 (2020). https://doi.org/10.1007/s11071-020-05893-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05893-z

Keywords

Navigation