Skip to main content
Log in

Propagation dynamics of tripole breathers in nonlocal nonlinear media

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We demonstrate the propagation dynamics of optical breathers in nonlinear media with a spatial nonlocality, which is governed by the nonlocal nonlinear Schrödinger equation, by employing the variational approach. Taking a tripole breather as an example, the approximate analytical solution is obtained and the physical propagation properties, such as the evolution of the critical power, the spot size, the wavefront curvature, and the intensity distribution of the breather, have been discussed in detail. The physical reasons for the evolution of the tripole breathers are analyzed by borrowing the ideas from Newtonian mechanics. It is found that the analytical results obtained by the variational approach agree well with the numerical results of the nonlocal Schrödinger equation for the strong nonlocal case, especially when the incident power approaches the critical power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Snyder, A.W., Mitchell, D.J.: Accessible solitons. Science 276(5318), 1538–1541 (1997)

    Google Scholar 

  2. Guo, Q., Luo, B., Yi, B., Chi, S., Xie, Y.: Large phase shift of nonlocal optical spatial solitons. Phys. Rev. E 69(2), 016602 (2004)

    Google Scholar 

  3. Song, L., Yang, Z., Li, X., Zhang, S.: Controllable Gaussian-shaped soliton clusters in strongly nonlocal media. Opt. Express 26(15), 19182–19198 (2018)

    Google Scholar 

  4. Yang, Z.J., Zhang, S.M., Li, X.L., Pang, Z.G.: Variable sinh-Gaussian solitons in nonlocal nonlinear Schrödinger equation. Appl. Math. Lett. 82, 64–70 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Wang, L., Zhu, Y., Wang, Z.: Higher-order semirational solutions and nonlinear wave interactions for a derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 33, 218–228 (2016)

    MathSciNet  Google Scholar 

  6. Conti, C., Peccianti, M., Assanto, G.: Route to nonlocality and observation of accessible solitons. Phys. Rev. Lett. 91(7), 073901 (2003)

    Google Scholar 

  7. Conti, C., Peccianti, M., Assanto, G.: Observation of optical spatial solitons in a highly nonlocal medium. Phys. Rev. Lett. 92(11), 113902 (2004)

    Google Scholar 

  8. Hu, W., Zhang, T., Guo, Q., Xuan, L., Lan, S.: Nonlocality-controlled interaction of spatial solitons in nematic liquid crystals. Appl. Phys. Lett. 89(7), 071111 (2006)

    Google Scholar 

  9. Duree Jr., G.C., Shultz, J.L., Salamo, G.J., Segev, M., Yariv, A., Crosignani, B., Porto, P.D., Sharp, E.J., Neurgaonkar, R.R.: Observation of self-trapping of an optical beam due to the photorefractive effect. Phys. Rev. Lett. 71(4), 533–536 (1993)

    Google Scholar 

  10. Asif, N., Biswas, A., Jovanoski, Z., Konar, S.: Interaction of spatially separated oscillating solitons in biased two-photon photorefractive materials. J. Mod. Opt. 62(1), 1–10 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Katti, A., Yadav, R.A.: Spatial solitons in biased photovoltaic photorefractive materials with the pyroelectric effect. Phys. Lett. A 381(3), 166–170 (2017)

    MathSciNet  Google Scholar 

  12. Ma, X., Yang, Z., Lu, D., Hu, W.: Multiple-type solutions for multipole interface solitons in thermal nonlinear media. Phys. Rev. A 84(3), 033802 (2011)

    Google Scholar 

  13. Navarrete, A., Paredes, A., Salgueiro, J.R.: Spatial solitons in thermo-optical media from the nonlinear Schrödinger–Poisson equation and dark-matter analogues. Phys. Rev. A 95(1), 013844 (2017)

    Google Scholar 

  14. Rotschild, C., Alfassi, B., Cohen, O., Segev, M.: Long-range interactions between optical solitons. Nat. Phys. 2(11), 769–774 (2006)

    Google Scholar 

  15. Zeng, S., Chen, M., Zhang, T., Hu, W., Guo, Q., Lu, D.: Analytical modeling of soliton interactions in a nonlocal nonlinear medium analogous to gravitational force. Phys. Rev. A 97(1), 013817 (2018)

    Google Scholar 

  16. Jia, R.R., Guo, R.: Breather and rogue wave solutions for the (2+1)-dimensional nonlinear Schrödinger–Maxwell–Bloch equation. Appl. Math. Lett. 93, 117–123 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Guo, R., Hao, H.Q.: Propagation properties of soliton solutions under the influence of higher order effects in erbium doped fibers. Commun. Nonlinear Sci. 19, 3529–3538 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Song, L., Yang, Z., Zhang, S., Li, X.: Dynamics of rotating Laguerre–Gaussian soliton arrays. Opt. Express 27(19), 26331–26345 (2019)

    Google Scholar 

  19. Song, L.M., Yang, Z.J., Li, X.L., Zhang, S.M.: Coherent superposition propagation of Laguerre–Gaussian and Hermite–Gaussian solitons. Appl. Math Lett. 102, 106114 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Deng, D., Guo, Q.: Ince–Gaussian solitons in strongly nonlocal nonlinear media. Opt. Lett. 32(21), 3206–3208 (2007)

    Google Scholar 

  21. Yang, Z.J., Zhang, S.M., Li, X.L., Pang, Z.G., Bu, H.X.: High-order revivable complex-valued hyperbolic-sine-Gaussian solitons and breathers in nonlinear media with a spatial nonlocality. Nonlinear Dyn. 94, 2563–2573 (2018)

    Google Scholar 

  22. Montesinos, G.D., Pérez-Garcéa, V.M., Torres, P.J.: Stabilization of solitons of the multidimensional nonlinear Schrödinger equation: matter-wave breathers. Physica D 191(3–4), 193–210 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Flach, S., Gorbach, A.V.: Discrete breathers—advances in theory and applications. Phys. Rep. 467(1–3), 1–116 (2008)

    MATH  Google Scholar 

  24. Onorato, M., Proment, D., Clauss, G., Clauss, G., Klein, M.: Rogue waves: from nonlinear Schrödinger breather solutions to sea-keeping test. PLoS One 8, e54629 (2013)

    Google Scholar 

  25. Yang, Z.J., Yang, Z.F., Li, J.X., Dai, Z.P., Zhang, S.M., Li, X.L.: Interaction between anomalous vortex beams in nonlocal media. Results Phys. 7, 1485–1486 (2017)

    Google Scholar 

  26. Karpman, V.I., Maslov, E.M.: Perturbation theory for solitons. JETP 73, 537–559 (1977)

    MathSciNet  Google Scholar 

  27. Ouyang, S., Guo, Q., Hu, W.: Perturbative analysis of generally nonlocal spatial optical solitons. Phys. Rev. E 74, 036622 (2006)

    MathSciNet  Google Scholar 

  28. Yokuş, A., Gülbahar, S.: Numerical solutions with linearization techniques of the fractional Harry Dym equation. Appl. Math. Nonlinear Sci. 4(1), 35–42 (2019)

    MathSciNet  Google Scholar 

  29. Ma, W.X., Zeng, Y.B.: Binary constrained flows and separation of variables for soliton equations. Anziam J. 44, 129–139 (2002)

    MathSciNet  MATH  Google Scholar 

  30. Kong, L.Q., Dai, C.Q.: Some discussions about variable separation of nonlinear models using Riccati equation expansion method. Nonlinear Dyn. 81, 1553–1561 (2015)

    MathSciNet  Google Scholar 

  31. Wu, H.Y., Jiang, L.H.: Instruction on the construction of coherent structures based on variable separation solutions of (2+1)-dimensional nonlinear evolution equations in fluid mechanics. Nonlinear Dyn. 97, 403–412 (2019)

    MATH  Google Scholar 

  32. Liang, G., Cheng, W., Dai, Z., Wang, M., Li, H.: Spiraling elliptic solitons in lossy nonlocal nonlinear media. Opt. Express 25(10), 11717–11724 (2017)

    Google Scholar 

  33. Saha, M., Roy, S., Varshney, S.K.: Variational approach to study soliton dynamics in a passive fiber loop resonator with coherently driven phase-modulated external field. Phys. Rev. E 100, 022201 (2019)

    Google Scholar 

  34. Anderson, D.: Variational approach to nonlinear pulse propagation in optical fibers. Phys. Rev. A 27, 3135 (1983)

    Google Scholar 

  35. Bai, D.F., Huang, C.C., He, J.F., Wang, Y.: Variational solutions for Hermite-Gaussian solitons in nonlocal nonlinear media. Chin. Phys. B 18(7), 2853–2857 (2009)

    Google Scholar 

  36. Aleksić, N.B., Petrović, M.S., Strinić, A.I., Belić, M.R.: Solitons in highly nonlocal nematic liquid crystals: variational approach. Phys. Rev. A 85, 033826 (2012)

    Google Scholar 

  37. Liu, Z., Zang, W., Tian, J., Zhou, W., Zhang, C., Zhang, G.: Analysis of Z-scan of thick media with high-order nonlinearity by variational approach. Opt. Commun. 219, 411–419 (2003)

    Google Scholar 

  38. Zang, W., Tian, W., Liu, Z., Zhou, W., Song, F., Xu, J.: Analysis of Z-scan of thick media with nonlinear refraction and absorption for elliptic Gaussian beam by variational approach. Opt. Commun. 237, 221–227 (2004)

    Google Scholar 

  39. Yang, Z., Ma, X., Lu, D., Zheng, Y., Gao, X., Hu, W.: Relation between surface solitons and bulk solitons in nonlocal nonlinear media. Opt. Express 19(6), 4890–4901 (2011)

    Google Scholar 

  40. Dai, Z., Yang, Z., Ling, X., Zhang, S., Pang, Z., Li, X., Wang, Y.: Tripole-mode and quadrupole-mode solitons in (1+1)-dimensional nonlinear media with a spatial exponential-decay nonlocality. Sci. Rep. 7, 122 (2017)

    Google Scholar 

  41. Chen, M., Zeng, S., Lu, D., Hu, W., Guo, Q.: Optical solitons, self-focusing, and wave collapse in a space-fractional Schrödinger equation with a Kerr-type nonlinearity. Phys. Rev. E 98, 022211 (2018)

    MathSciNet  Google Scholar 

  42. Chen, M.N., Guo, Q., Lu, D.Q., Hu, W.: Variational approach for breathers in a nonlinear fractional Schrödinger equation. Commun. Nonlinear Sci. 71, 73–81 (2019)

    MathSciNet  Google Scholar 

  43. Biswas, A., Konar, S.: Quasi-particle theory of optical soliton interaction. Commun. Nonlinear Sci. 12, 1202–1228 (2007)

    MathSciNet  MATH  Google Scholar 

  44. Yekrangi, A., Yaghobi, M., Riazian, M., Koochi, A.: Scale-dependent dynamic behavior of nanowire-based sensor in accelerating field. J. Appl. Comput. Mech. 5(2), 486–497 (2018)

    Google Scholar 

  45. Malikan, M., Sadraee Far, M.: Differential quadrature method for dynamic buckling of graphene sheet coupled by a viscoelastic medium using neperian frequency based on nonlocal elasticity theory. J. Appl. Comput. Mech. 4(3), 147–160 (2018)

    Google Scholar 

  46. Delkhosh, M., Parand, K., Domiri Ganji, D.: An efficient numerical method to solve the boundary layer flow of an Eyring–Powell non-Newtonian fluid. J. Appl. Comput. Mech. 5(2), 454–467 (2019)

    Google Scholar 

  47. Liu, L., Liu, Y., Tong, S.: Neural networks-based adaptive finite-time fault-tolerant control for a class of strict-feedback switched nonlinear systems. IEEE Trans. Cybern. 49(7), 2356–2545 (2018)

    Google Scholar 

  48. Sun, K., Qiu, J., Hamid, K., Fu, Y.: Event-triggered robust fuzzy adaptive finite-time control of nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2979129

    Article  Google Scholar 

  49. Sun, Y., Mao, B., Zhou, S., Liu, H.: Finite-time adaptive control for non-strict feedback stochastic nonlinear systems. IEEE Access 7, 179758–179764 (2019)

    Google Scholar 

  50. Song, L., Yang, Z., Zhang, S., Li, X.: Spiraling anomalous vortex beam arrays in strongly nonlocal nonlinear media. Phys. Rev. A 99(6), 063817 (2019)

    Google Scholar 

  51. Xu, Z.Y., Kartashov, Y.V., Torner, L.: Upper threshold for stability of multipole-mode solitons in nonlocal nonlinear media. Opt. Lett. 30, 3171–3173 (2005)

    Google Scholar 

  52. Skupin, S., Bang, O., Edmundson, D., Krolikowski, W.: Stability of two-dimensional spatial solitons in nonlocal nonlinear media. Phys. Rev. E 73, 066603 (2006)

    Google Scholar 

  53. Zhong, L.H., Li, Y.Q., Chen, Y., Hong, W., Hu, W., Guo, Q.: Chaoticons described by nonlocal nonlinear Schrödinger equation. Sci. Rep. 7, 41438 (2017)

    Google Scholar 

  54. Wise, F.W.: Solitons divide and conquer. Nature 554, 179–180 (2018)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of Hebei Province of China (Grant No. A2020205009), the Technology Key Project of Colleges and Universities of Hebei Province (Grant No. ZD2018081), the Chunhui Plan of Ministry of Education of China (Grant No. Z2017020), the Science Fund for Distinguished Young Scholars of Hebei Normal University (Grant No. L2017J02), and the Innovation Funding Project for Graduate Students of Hebei Normal University of China (Grant No. CXZZSS2020065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Jun Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, JL., Yang, ZJ., Song, LM. et al. Propagation dynamics of tripole breathers in nonlocal nonlinear media. Nonlinear Dyn 101, 1147–1157 (2020). https://doi.org/10.1007/s11071-020-05829-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05829-7

Keywords

Navigation