Skip to main content
Log in

Characterizing chaos and multifractality in noise-assisted tumor-immune interplay

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We propose a noise-assisted tumor-immune system based on the Wiener process. Stochastic sensitivity and chaos both are studied with the variations of noise strengths. The sensitivity analysis is done by confidence ellipsoid fit technique. It indicates that the sensitivity is enhanced with the increase of noise strengths. On finding chaos, the existence of multi-periodicity is investigated by counting periods under the variation of the same noise strengths. Further, noise-induced chaos is quantified by measuring the asymptotic growth of the phase space trajectories. With the same analysis, chaotic and non-chaotic regimes are classified. Moreover, deterministic and its noise-induced chaotic dynamics are compared using wavelet leader-based multifractal analysis. Numerical results assure that the noise-assisted tumor-immune system illustrates the rich as well as fine structure compared to its non-noisy dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adam, J., Bellomo, N.: A Survey of Models for Tumor Immune Dynamics. Birkhauser, Boston (1997)

    MATH  Google Scholar 

  2. Kuznetsov, V.A., Makalkin, I.A., Taylor, M.A., Perelson, A.S.: Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56(2), 295–321 (1994)

    MATH  Google Scholar 

  3. Itik, M., Banks, S.P.: Chaos in a three-dimensional cancer model. J. Theor. Biol. 20, 71–79 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Weinberg, R.A.: The Biology of Cancer, 2nd edn. Garland Science, London (2013)

    Google Scholar 

  5. Das, P., Mukherjee, S., Das, P.: An investigation on michaelis—menten kinetics based complex dynamics of tumor—immune interaction. Chaos Solitons Fractals 128, 297–305 (2019)

    MathSciNet  Google Scholar 

  6. Das, P., Das, S., Upadhyay, R.K., Das, P.: Optimal treatment strategies for delayed cancer-immune system with multiple therapeutic approach. Chaos Solitons Fractals 136, 109806 (2020)

    MathSciNet  Google Scholar 

  7. Grivennikov, S.I., Greten, F.R., Karin, M.: Immunity, inflammation, and cancer. Cell 140(6), 883–90 (2010)

    Google Scholar 

  8. Wilkie, K.P.: A Review of Mathematical Models of Cancer–Immune Interactions in the Context of Tumor Dormancy. Springer, New York (2013)

    Google Scholar 

  9. Das, P., Das, P., Das, S.: Effects of delayed immune-activation in the dynamics of tumor-immune interactions. Math. Model. Nat. Phenom. (2020). https://doi.org/10.1051/mmnp/2020001

    Article  MATH  Google Scholar 

  10. Das, P., Mukherjee, S., Das, P.: Dynamics of effector-tumor-interleukin-2 interactions with monod-haldane immune response and treatments. In: Recent Advances in Intelligent Information Systems and Applied Mathematics (2020)

  11. Fiasconaro, A., Spagnolo, B., Ochab-Marcinek, A., Gudowska-Nowak, E.: Co-occurrence of resonant activation and noise-enhanced stability in a model of cancer growth in the presence of immune response. Phys. Rev. E 74, 041904 (2006)

    Google Scholar 

  12. d’Onofrio, A.: Bounded-noise-induced transitions in a tumor-immune system interplay. Phys. Rev. E 81, 021923 (2010)

    Google Scholar 

  13. Bose, T., Trimper, S.: Noise-assisted interactions of tumor and immune cells. Phys. Rev. E 84, 021927 (2011)

    Google Scholar 

  14. Xuerong, M., Glenn, M., Eric, R.: Environmental brownian noise suppresses explosions in population dynamics. Stoch. Process. Appl. 97(1), 95–110 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Das, S., Das, P., Das, P.: Dynamics and control of multidrug-resistant bacterial infection in hospital with multiple delays. Commun. Nonlinear Sci. Numer. Simul. 89, 105279 (2020)

    MathSciNet  Google Scholar 

  16. Das, P., Das, P., Das, S.: An investigation on monod-haldane immune response based tumor-effector-interleukin-2 interactions with treatments. Appl. Math. Comput. 361, 536–551 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Das, P., Das, P., Kundu, A.: Delayed feedback controller based finite time synchronization of discontinuous neural networks with mixed time-varying delays. Neural Process. Lett. 49(2), 693–709 (2019)

    Google Scholar 

  18. d’Onofrio, A.: A general framework for modeling tumor-immune system competition and immunotherapy: mathematical analysis and biomedical inferences. Physica D 3–4(208), 220–235 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Tsimring, L.S.: Noise in biology. Rep. Progr. Phys. 77(2), 026601 (2014)

    Google Scholar 

  20. Das, P., Das, P., Mukherjee, S.: Stochastic dynamics of michaelis—menten kinetics based tumor-immune interactions. Physica A 541, 123603 (2020)

    MathSciNet  Google Scholar 

  21. Kaitala, V., Ylikarjula, J., Ranta, E.M., Lundberg, P.: Population dynamics and the colour of environmental noise. Proc. Biol. Sci. 264(1384), 943–948 (1997)

    Google Scholar 

  22. Szendro, P., Vincze, G., Szasz, A.: Pink-noise behavior of biosystems. Eur. Biophys. J. 30, 227–231 (2001)

    Google Scholar 

  23. Rondoni, L., Ariffin, M.R.K., Varatharajoo, R., Mukherjee, S., Palit, S.K., Banerjee, S.: Optical complexity in external cavity semiconductor laser. Opt. Commun. 387, 257–266 (2017)

    Google Scholar 

  24. Banerjee, S., Ariffin, M.R.K.: Noise induced synchronization of time-delayed semiconductor lasers and authentication based asymmetric encryption. Opt. Laser Technol. 45, 435–442 (2013)

    Google Scholar 

  25. Bashkirtseva, I., Ryashko, L., Zaitseva, S.: Analysis of nonlinear stochastic oscillations in the biochemical goldbeter model. Commun. Nonlinear Sci. 73, 165–176 (2019)

    MathSciNet  Google Scholar 

  26. Dang, T.S., Palit, S.K., Mukherjee, S., Hoang, T.M., Banerjee, S.: Complexity and synchronization in stochastic chaotic systems. Eur. Phys. J. Spec. Top. 225(1), 159–170 (2016)

    Google Scholar 

  27. Yan, B., Mukherjee, S., He, S.: A study on dynamical complexity of noise induced blood flow. Eur. Phys. J. Spec. Top. 228(12), 2769–2777 (2019)

    Google Scholar 

  28. Horsthemke, W., Lefever, R.: Noise-Induced Transitions, vol. 15. Springer, Berlin (1984)

    MATH  Google Scholar 

  29. Guo, W., Mei, D.-C.: Stochastic resonance in a tumor-immune system subject to bounded noises and time delay. Physica A 416, 90–98 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Letellier, C., Denis, F., Aguirre, L.A.: What can be learned from a chaotic cancer model? J. Theor. Biol. 322, 7–16 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Moss, F., McClintock, P.V.E.: Noise in Nonlinear Dynamical Systems, vol. 2. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  32. Anishchenko, V.S., Astakhov, V., Neiman, A., Vadivasova, T., Schimansky-Geier, L.: Nonlinear Dynamics of Chaotic and Stochastic Systems, vol. 2. Springer, Berlin (2007)

    MATH  Google Scholar 

  33. Gardiner, C.: Stochastic Methods. A Handbook for the Natural and Social Sciences. Springer, Berlin (2009)

    MATH  Google Scholar 

  34. Bashkirtseva, I., Ryashko, L., Ryazanova, T.: Analysis of regular and chaotic dynamics in a stochastic eco-epidemiological model. Chaos Solitons Fractals 131, 109549 (2019)

    MathSciNet  Google Scholar 

  35. Bashkirtseva, I., Ryashko, L., Ryazanova, T.: Stochastic variability and transitions to chaos in a hierarchical three-species population model. Chaos Solitons Fractals 119, 276–283 (2019)

    MathSciNet  Google Scholar 

  36. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985)

    MathSciNet  MATH  Google Scholar 

  37. Gottwald, G.A., Melbourne, I.: A new test for chaos in deterministic systems. Proc. R Soc. Lond. A 460, 603–611 (2004)

    MathSciNet  MATH  Google Scholar 

  38. Gottwald, G.A., Melbourne, I.: Comment on “Reliability of the 0–1 test for chaos”. Phys. Rev. E 77(2), 028201 (2008)

    Google Scholar 

  39. Mukherjee, S., Banerjee, S., Rondoni, L.: Dispersive graded entropy on computing dynamical complexity. Physica A 508, 131–140 (2018)

    Google Scholar 

  40. Yan, B., Palit, S.K., Mukherjee, S., Banerjee, S.: Signature of complexity in time-frequency domain. Physica A 535, 122433 (2019)

    Google Scholar 

  41. Jaffard, S., Lashermes, B., Abry, P.: Wavelet Leaders in Multifractal Analysis. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  42. Gould, H., Tobochnik, J.: More on fractals and chaos: multifractals. Comput. Phys. 4(2), 202–207 (1990)

    Google Scholar 

  43. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Springer, New York (2012)

    MATH  Google Scholar 

  44. Ryashko, L., Mil’shtein, S.: A first approximation of the quasi-potential in problems of the stability of systems with random nondegenerate perturbations. J. Appl. Math. Mech. 59, 47–56 (1995)

    MathSciNet  Google Scholar 

  45. Catherine, K., William, V., Jeremy, S., Nadeen, Z., Scott, R.J., Lloyd, O.J., Mark, S.J., Robert, S.D.: Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007)

    Google Scholar 

  46. Wendt, H., Roux, S.G., Jaffard, S., Abry, P.: Wavelet leaders and bootstrap for multifractal analysis of images. Signal Process. 89(6), 1100–1114 (2009)

    MATH  Google Scholar 

  47. Banerjee, S., Hassan, M.K., Mukherjee, S., Gowrisankar, A.: Fractal Patterns in Nonlinear Dynamics and Applications. CRC Press, Boca Raton (2019)

    MATH  Google Scholar 

  48. Shimizu, Y., Thurner, S., Ehrenberger, K.: Multifractal spectra as a measure of complexity in human posture. Fractals 10(01), 103–116 (2002)

    Google Scholar 

Download references

Funding

Parthasakha Das is supported by Indian Institute of Engineering Science and Technology, Shibpur, under institute fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parthasakha Das.

Ethics declarations

Conflict of interest

The authors have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Mukherjee, S., Das, P. et al. Characterizing chaos and multifractality in noise-assisted tumor-immune interplay. Nonlinear Dyn 101, 675–685 (2020). https://doi.org/10.1007/s11071-020-05781-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05781-6

Keywords

Navigation