Skip to main content
Log in

Nonlinear vibration analysis in precision motion stage with PID and time-delayed feedback controls

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate the control of friction-induced vibration in a precision motion stage under the effect of the LuGre friction dynamics. We consider a lumped parameter model of the precision motion stage with PID and linear time-delayed state feedback control acting in the direction of the motion of the stage. Linear stability analysis reveals the criticality of integral gain in the stability and, accordingly, the existence of multiple stability lobes and codimension-2 Hopf points for a given choice of system parameters. The nature of the bifurcation is determined by an analytical study using the method of multiple scales and harmonic balance. We observe the existence of both subcritical and supercritical Hopf bifurcations in the system, depending on the choice of control parameters. Hence, the nonlinearity due to dynamic friction model could both be stabilizing or destabilizing in nature, and therefore, stick-slip nonlinearity is essential to capture the global behavior of the system dynamics. Furthermore, numerical bifurcation analysis of the system reveals the existence of period-doubling bifurcation near the Hopf points. We observe complicated solutions such as period-4, quasi-periodic, large-amplitude stick-slip limit cycles along with chaotic attractor in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Kim, W., Trumper, D.L.: High-precision magnetic levitation stage for photolithography. Precis. Eng. 22(2), 66–77 (1998)

    Google Scholar 

  2. Kim, W.J., Verma, S., Shakir, H.: Design and precision construction of novel magnetic-levitation-based multi-axis nanoscale positioning systems. Precis. Eng. 31(4), 337–350 (2007)

    Google Scholar 

  3. Salapaka, S.M., Salapaka, M.V.: Scanning probe microscopy. IEEE Control Syst. Mag. 28(2), 65–83 (2008)

    MathSciNet  Google Scholar 

  4. Sebastian, A., Pantazi, A., Moheimani, S.O.R., Pozidis, H., Eleftheriou, E.: Achieving subnanometer precision in a mems-based storage device during self-servo write process. IEEE Trans. Nanotechnol. 7(5), 586–595 (2008)

    Google Scholar 

  5. Fleming, A.J., Leang, K.K.: Design, Modeling and Control of Nanopositioning Systems. Springer, Berlin (2014)

    Google Scholar 

  6. Butler, H.: Position control in lithographic equipment. IEEE Control Syst. Mag. 31(5), 28–47 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Altintas, Y., Verl, A., Brecher, C., Uriarte, L., Pritschow, G.: Machine tool feed drives. CIRP Ann 60(2), 779–796 (2011)

    Google Scholar 

  8. Al-Bender, F., Swevers, J.: Characterization of friction force dynamics. IEEE Control Syst. Mag. 28(6), 64–81 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Marques, F., Flores, P., Claro, J.C.P., Lankarani, H.M.: A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. 86(3), 1407–1443 (2016)

    MathSciNet  Google Scholar 

  10. Futami, S., Furutani, A., Yoshida, S.: Nanometer positioning and its micro-dynamics. Nanotechnology 1(1), 31 (1990)

    Google Scholar 

  11. Armstrong-Hélouvry, B., Dupont, P., Wit, C.C.D.: A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30(7), 1083–1138 (1994)

    MATH  Google Scholar 

  12. Hensen, R.H.A., Van de Molengraft, M.J.G., Steinbuch, M.: Friction induced hunting limit cycles: a comparison between the lugre and switch friction model. Automatica 39(12), 2131–2137 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Maeda, Y., Iwasaki, M.: Rolling friction model-based analyses and compensation for slow settling response in precise positioning. IEEE Trans. Ind. Electron. 60(12), 5841–5853 (2012)

    Google Scholar 

  14. Dong, X., Yoon, D., Okwudire, C.E.: A novel approach for mitigating the effects of pre-rolling/pre-sliding friction on the settling time of rolling bearing nanopositioning stages using high frequency vibration. Precis. Eng. 47, 375–388 (2017)

    Google Scholar 

  15. Kim, M.-S., Kim, J.-H.: Design of a gain scheduled pid controller for the precision stage in lithography. Int. J. Precis. Eng. Manuf. 12(6), 993–1000 (2011)

    Google Scholar 

  16. Liu, J.-Y., Yin, W.-S., Zhu, Y.: Application of adaptive fuzzy pid controller to nano-scale precision motion stage system. Control Eng. China 18(2), 254–257 (2011)

    Google Scholar 

  17. Dejima, S., Gao, W., Katakura, K., Kiyono, S., Tomita, Y.: Dynamic modeling, controller design and experimental validation of a planar motion stage for precision positioning. Precis. Eng. 29(3), 263–271 (2005)

    Google Scholar 

  18. Yao, J., Deng, W., Jiao, Z.: Adaptive control of hydraulic actuators with lugre model-based friction compensation. IEEE Trans. Ind. Electron. 62(10), 6469–6477 (2015)

    Google Scholar 

  19. Wang, X., Wang, S.: High performance adaptive control of mechanical servo system with lugre friction model: identification and compensation. J. Dyn. Syst. Meas. Control 134(1), 011021 (2012)

    Google Scholar 

  20. Conceição, A.G.S., Dórea, C.E.T., Martinez, L., de Pieri, E.R., et al.: Design and implementation of model-predictive control with friction compensation on an omnidirectional mobile robot. IEEE/ASME Trans. Mechatron. 19(2), 467–476 (2013)

    Google Scholar 

  21. Dong, X., Liu, X., Yoon, D., Okwudire, C.E.: Simple and robust feedforward compensation of quadrant glitches using a compliant joint. CIRP Ann. 66(1), 353–356 (2017)

    Google Scholar 

  22. Dong, X., Okwudire, C.E.: An experimental investigation of the effects of the compliant joint method on feedback compensation of pre-sliding/pre-rolling friction. Precis. Eng. 54, 81–90 (2018)

    Google Scholar 

  23. Maccari, A.: Vibration control for the primary resonance of a cantilever beam by a time delay state feedback. J. Sound Vib. 259(2), 241–251 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Atay, F.M.: Van der pol’s oscillator under delayed feedback. J. Sound Vib. 218(2), 333–339 (1998)

    MathSciNet  MATH  Google Scholar 

  25. Maccari, A.: Vibration control for the primary resonance of the van der pol oscillator by a time delay state feedback. Int. J. Non-Linear Mech. 38(1), 123–131 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Haiyan, H., Dowell, E.H., Virgin, L.N.: Resonances of a harmonically forced duffing oscillator with time delay state feedback. Nonlinear Dyn. 15(4), 311–327 (1998)

    MATH  Google Scholar 

  27. Qian, C., Tang, J.: A time delay control for a nonlinear dynamic beam under moving load. J. Sound Vib. 309(1–2), 1–8 (2008)

    Google Scholar 

  28. Das, J.K., Mallik, A.K.: Control of friction driven oscillation by time-delayed state feedback. J. Sound Vib. 297(3–5), 578–594 (2006)

    Google Scholar 

  29. Chatterjee, S.: Time-delayed feedback control of friction-induced instability. Int. J Non-Linear Mech. 42(9), 1127–1143 (2007)

    MATH  Google Scholar 

  30. Neubauer, M., Neuber, C.-C., Popp, K.: Control of stick-slip vibrations. In: IUTAM Symposium on Vibration Control of Nonlinear Mechanisms and Structures, pp. 223–232. Springer (2005)

  31. Lee, J.H.: Model predictive control: review of the three decades of development. Int. J. Control Autom. Syst. 9(3), 415 (2011)

    Google Scholar 

  32. Krsti, M., Kanellakopoulos, I., Petar, V.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    Google Scholar 

  33. Dong, X., Okwudire, C., Wang, J., Barry, O.: On the friction isolator for precision motion control and its dynamics. In: ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection (2019)

  34. Wang, J., Dong, X., Barry, O.R., Okwudire, C.: Dynamical analysis of friction induced vibration in a precision motion stage with a friction isolator. arXiv preprint arXiv:1910.03212 (2019)

  35. De Wit, C.C., Olsson, H., Astrom, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40(3), 419–425 (1995)

    MathSciNet  MATH  Google Scholar 

  36. Chatterjee, S.: Non-linear control of friction-induced self-excited vibration. Int. J. Non-Linear Mech. 42(3), 459–469 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Johanastrom, K., Canudas-De-Wit, C.: Revisiting the lugre friction model. IEEE Control Syst. Mag. 28(6), 101–114 (2008)

    MathSciNet  MATH  Google Scholar 

  38. Pennestrì, E., Rossi, V., Salvini, P., Valentini, P.P.: Review and comparison of dry friction force models. Nonlinear Dyn. 83(4), 1785–1801 (2016)

    MATH  Google Scholar 

  39. Marques, F., Flores, P., Claro, J.C.P., Lankarani, H.M.: Modeling and analysis of friction including rolling effects in multibody dynamics: a review. Multibody Syst. Dyn. 45(2), 223–244 (2019)

    MathSciNet  Google Scholar 

  40. Saha, A., Wahi, P.: An analytical study of time-delayed control of friction-induced vibrations in a system with a dynamic friction model. Int. J. Non-Linear Mech. 63, 60–70 (2014)

    Google Scholar 

  41. Saha, A.: Analysis and control of friction-induced vibrations by time-delayed feedback. PhD thesis, Indian Institute of Technology, Kanpur, India (2013)

  42. Balachandran, B., Nayfeh, A.H.: Cyclic motions near a hopf bifurcation of a four-dimensional system. Nonlinear Dyn. 3(1), 19–39 (1992)

    Google Scholar 

  43. Wahi, P., Chatterjee, A.: Galerkin projections for delay differential equations. In: ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 2211–2220. American Society of Mechanical Engineers (2003)

  44. Gupta, S.K., Wahi, P.: Global axial-torsional dynamics during rotary drilling. J. Sound Vib. 375, 332–352 (2016)

    Google Scholar 

  45. Wahi, P., Chatterjee, A.: Self-interrupted regenerative metal cutting in turning. Int. J. Non-Linear Mech. 43(2), 111–123 (2008)

    Google Scholar 

  46. Scott, S.K.: Chemical Chaos. International Series of Monographs on Chemistry. Clarendon Press, Oxford (1993)

    Google Scholar 

  47. Anishchenko, V.S., Vadivasova, T.E., Strelkova, G.I.: Deterministic Nonlinear Systems: A Short Course. Springer Series in Synergetics. Springer, Berlin (2014)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was funded by National Science Foundation (NSF) Award CMMI #1855390: Towards a Fundamental Understanding of a Simple, Effective and Robust Approach for Mitigating Friction in Nanopositioning Stages.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oumar R. Barry.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Expressions used in the linear analysis

$$\begin{aligned} n_1= & {} -2{ a_1}{\omega }^{6}{ k_i}-{\omega }^{10}-2{{ v_{rv}}}^ {2}{{ \sigma _0}}^{2}{{ g_0}}^{2}{\omega }^{6}{ a_2} \\&+\,{{ v_{rv}}}^{2}{{ \sigma _0}}^{2}{{ g_0}}^{2}{\omega }^{4}{{ a_2}}^{2}-2{\omega }^{6}{ v_{rv}}{ \sigma _0}{ g_0}{ a_1} \\&-\,{\omega }^{6}{{ v_{rv}}}^{2}{{ \sigma _0}}^{2}{{ g_0}}^{2 }{{ a_1}}^{2}+2{\omega }^{4}{{ v_{rv}}}^{3}{{ \sigma _0}}^{3} {{ g_0}}^{3}{ a_1} \\&+\,2{{ k_i}}^{2}{\omega }^{2}{{ v_{rv}} }^{2}{{ \sigma _0}}^{2}{{ g_0}}^{2}+2{ k_i}{\omega }^{4}{ v_{rv}}{ \sigma _0}{ g_0} \\&+\,2{k_i}{\omega }^{6}{ v_{rv}}{ \sigma _0}{ g_0}+2{ k_i}{{ v_{rv}}}^{3 }{{ \sigma _0}}^{3}{{ g_0}}^{3}{\omega }^{2} \\&+\,2{ k_i}{{ v_{rv}}}^{3}{{ \sigma _0}}^{3}{{ g_0}}^{3}{\omega }^{4}+4{ \omega }^{6}{ a_2}{ v_{rv}}{ \sigma _0}{ g_0}{ a_1} \\&+\,{\omega }^{4}{{ v_{rv}}}^{2}{{ \sigma _0}}^{2}{{ g_0}}^{2 }-{\omega }^{2}{{ v_{rv}}}^{4}{{ \sigma _0}}^{4}{{ g_0}}^{4} \\&+\,{{k_i}}^{2}{{ v_{rv}}}^{4}{{ \sigma _0}}^{4}{{ g_0}}^{4}+{{ v_{rv}}}^{2}{{ \sigma _0}}^{2}{{ g_0}}^{2}{\omega }^{8}\\&+\,{{a_1}}^{2}{\omega }^{8}+{{ k_i}}^{2}{\omega }^{4}+2{\omega }^{8}{ a_2}-{\omega }^{6}{{ a_2}}^{2} \\&-\,4{\omega }^{8}{ v_{rv}}{ \sigma _0}{ g_0}{ a_1}-4{\omega }^{4}{ a_2}{{ v_{rv}}}^{2}{{ \sigma _0}}^{2}{{ g_0}}^{2} \\&+\,4{\omega }^{6}{{ v_{rv}}}^{2}{{ \sigma _0}}^{2}{{ g_0}}^{2}-2{ a_1}{ \omega }^{4}{ k_i}{{ v_{rv}}}^{2}{{ \sigma _0}}^{2}{{ g_0 }}^{2} \\&-\,2{ k_i}{\omega }^{4}{ v_{rv}}{ \sigma _0}{ g_0}{ a_2}-2{ k_i}{{ v_{rv}}}^{3}{{ \sigma _0}}^{3} {{ g_0}}^{3}{\omega }^{2}{ a_2} \\ d_1= & {} \left( {\omega }^{2}+{{ v_{rv}}}^{2}{{ \sigma _0}}^{2}{{ g_0}}^{2} \right) \\&\left( {\omega }^{2}{{ v_{rv}}}^{2}{{ \sigma _0}}^{2} {{ g_0}}^{2}+{{ g_0}}^{2}{{ \sigma _0}}^{2}{{ v_{rv}}}^{2} {{ k_i}}^{2} \right. \\&\quad +\,2{ k_i}{\omega }^{2}{ v_{rv}}{ \sigma _0 }{ g_0}+2{ k_i}{\omega }^{4}{ v_{rv}}{ \sigma _0} { g_0} \\&\quad -\,2{ k_i}{\omega }^{2}{ v_{rv}}{ \sigma _0}{ g_0}{ a_2}-2{\omega }^{4}{ v_{rv}}{ \sigma _0}{ g_0}{ a_1} \\&\quad -\,2{\omega }^{6}{ a_2}+{{ k_i}}^{2}{ \omega }^{2}+{\omega }^{6}{{ a_1}}^{2}+{\omega }^{8} \\&\quad \left. +\,{\omega }^{4}{{ a_2}}^{2}-2{ a_1}{\omega }^{4}{ k_i} \right) \\ n_2= & {} -2 \left( { a_1}{\omega }^{4}-{ k_i}{\omega }^{2}-{ k_i}{{ v_{rv}}}^{2}{{ \sigma _0}}^{2}{{ g_0}}^{2} \right. \\&\qquad - {v_{rv}}{ \sigma _0}{ g_0}{\omega }^{2} - {v_{rv}}{ \sigma _0}{ g_0}{\omega }^{4} \\&\qquad \left. + {v_{rv}}{\sigma _0}{ g_0}{\omega }^{2}{ a_2} \right) \omega \\&\left( -{{ v_{rv}}}^{ 2}{{ \sigma _0}}^{2}{{ g_0}}^{2}+{ v_{rv}}{ \sigma _0}{g_0}{ a_1}{\omega }^{2}+{\omega }^{4}-{\omega }^{2}{ a_2 } \right) \\ d_2= & {} \left( {\omega }^{2}+{{ v_{rv}}}^{2}{{ \sigma _0}}^{2}{{ g_0}}^{2} \right) \\&\left( {\omega }^{2}{{ v_{rv}}}^{2}{{ \sigma _0}}^{2} {{ g_0}}^{2}+{{ g_0}}^{2}{{ \sigma _0}}^{2}{{ v_{rv}}}^{2} {{ k_i}}^{2} \right. \\&\quad +\,2{ k_i}{\omega }^{2}{ v_{rv}}{ \sigma _0 }{ g_0}+2{ k_i}{\omega }^{4}{ v_{rv}}{ \sigma _0} { g_0} \\&\quad -\,2{ k_i}{\omega }^{2}{ v_{rv}}{ \sigma _0}{ g_0}{ a_2} -2{\omega }^{4}{ v_{rv}}{ \sigma _0}{ g_0}{ a_1} \\&\quad -\,2{\omega }^{6}{ a_2}+{{ k_i}}^{2}{ \omega }^{2} +{\omega }^{6}{{ a_1}}^{2}+{\omega }^{8} \\&\quad \left. +\,{\omega }^{4}{{ a_2}}^{2}-2{ a_1}{\omega }^{4}{k_i} \right) \\ ct= & {} \cos {\left( \omega T\right) }\quad st=\sin {\left( \omega T\right) }\\ \hbox {Re}_1= & {} -{\frac{{v_{rv}}{g_1}{h_0}{\omega }^{2}}{{{v_{rv}}}^{2} {{\sigma _0}}^{2}{{g_0}}^{2}+{\omega }^{2}}} \\ Im_1= & {} {\frac{-{{v_{rv}}}^{2}{\sigma _0}{g_0}{g_1}{ h_0}\omega }{{{v_{rv}}}^{2}{{\sigma _0}}^{2}{{g_0}}^{2} +{\omega }^{2}}} \end{aligned}$$
$$\begin{aligned} \hbox {Lre}_1= & {} {\frac{{\omega }^{3}{ K_0}st -{ k_i}{\omega }^{2}}{-2{\omega }^{2}{{ K_0}}^{2}+2 \omega { K_0}st{ k_i }-{{ k_i}}^{2}+2{\omega }^{2}{{ K_0}}^{2}ct +2{ K_0}ct {\omega }^{2}-2{ K_0}{\omega }^{2}-{\omega }^{2}}} \\ \hbox {Lim}_1= & {} {\frac{ \left( {\omega }^{3} -{\omega }^{3}{ K_0}ct +{\omega }^{3}{ K_0}\right) }{-2{\omega }^ {2}{{ K_0}}^{2}+2\omega { K_0}st { k_i}-{{ k_i}}^{2}+2{\omega }^{2}{{ K_0}}^ {2}ct+2{ K_0}st{\omega }^{2}-2{ K_0}{\omega }^{2}-{ \omega }^{2}}} \\ \hbox {Lre}_2= & {} {\frac{{ k_i}{\omega }^{2}{ K_0}ct -{ k_i}{\omega }^{2}{ K_0}-{ k_i}{\omega } ^{2}}{-2{\omega }^{2}{{ K_0}}^{2}+2\omega { K_0}st{ k_i}-{{ k_i}}^{2}+2{ \omega }^{2}{{ K_0}}^{2}ct+2 { K_0}ct{\omega }^{2}-2{ K_0}{\omega }^{2}-{\omega }^{2}}} \\ \hbox {Lim}_2= & {} {\frac{{ k_i}{\omega }^{2}{ K_0}st-{{ k_i}}^{2}\omega }{-2{\omega }^{2}{{ K_0}}^{2 }+2\omega { K_0}st{ k_i}-{{ k_i}}^{2}+2{\omega }^{2}{{ K_0}}^{2}ct+2{ K_0}ct{\omega }^{2}-2{ K_0}{\omega }^{2}-{\omega }^{2}}} \\ \hbox {Lre}_3= & {} \frac{-{\omega }^{2}{ h_2} \left( \omega { K_0}st{ v_{rv}}{ \sigma _0}{ g_0}-{ k_i}{ v_{rv}}{ \sigma _0}{ g_0}-{ K_0}ct{\omega }^{2}+{ K_0}{\omega }^{ 2}+{\omega }^{2} \right) }{\left( {{ v_{rv}}}^{2}{{ \sigma _0}}^{2}{{ g_0}}^{2}+{\omega } ^{2} \right) \left( -2{\omega }^{2}{{ K_0}}^{2}+2\omega { K_0}st{ k_i}-{{ k_i}}^ {2}+2{\omega }^{2}{{ K_0}}^{2}ct+2{ K_0}ct{ \omega }^{2}-2{ K_0}{\omega }^{2}-{\omega }^{2} \right) } \\ \hbox {Lim}_3= & {} \frac{-{\omega }^{3}{ h_2} \left( { v_{rv}}{ \sigma _0}{ g_0}{ K_0}ct-{ v_{rv}} { \sigma _0}{ g_0}{ K_0}-{ v_{rv}}{ \sigma _0} { g_0}+\omega { K_0}st -{ k_i} \right) }{ \left( {{ v_{rv}}}^{2}{{ \sigma _0}}^{2}{{ g_0}}^{2}+{\omega } ^{2} \right) \left( -2{\omega }^{2}{{ K_0}}^{2}+2\omega { K_0}st{ k_i}-{{ k_i}}^ {2}+2{\omega }^{2}{{ K_0}}^{2}ct+2{ K_0}ct{ \omega }^{2}-2{ K_0}{\omega }^{2}-{\omega }^{2} \right) } \end{aligned}$$

Appendix 2: Expressions used in the nonlinear analysis

$$\begin{aligned} ct= & {} \cos {\left( \omega T_{cr}\right) }\quad st=\sin {\left( \omega T_{cr}\right) } \\ u_{11}= & {} {K_{0,cr}}{T_{cr}}ct\quad u_{12}=\left( \omega -{K_{0,cr}}{T_{cr}}st \right) \\ u_{21}= & {} -{\frac{{v_{rv}}{g_1}{h_0}{\omega }^{2}}{{{v_{rv}}}^{2}{{\sigma _0}}^{2} {{g_0}}^{2}+{\omega }^{2}}} \\ u_{22}= & {} {\frac{-{{v_{rv}}}^{2}{\sigma _0}{g_0}{g_1}{ h_0}\omega }{{{v_{rv}}}^{2}{{\sigma _0}}^{2}{{g_0}}^{2} +{\omega }^{2}}} \\ b_{11}= & {} -2i{\omega }^{2}\mathrm {e}^{2i\omega T_{cr}} \\&\left( 2i{\omega }^{2}{ h_0 }{\sigma _1}{ h_3}+{ h_2}\omega { h_0}{ h_3} \right. \\&\quad -\,i{ v_{rv}}{\sigma _0}{ g_0}{\sigma _1}{ h_4} {Re_1}+{\sigma _1}{ h_4}{Im_1}{ v_{rv}}{\sigma _0}{ g_0}\\&\quad +\,{ h_0}{\sigma _1}{ h_3}\omega { v_{rv}}{\sigma _0}{ g_0}+2i\omega {\sigma _1}{ h_4}{Im_1} \\&\quad \left. -i{ h_4}{Re_1}{ h_2}+{ h_2}{ h_4}{Im_1}+2{\sigma _1}{ h_4}\omega {Re_1} \right) / \\&\left( \mathrm {e}^{2i\omega T_{cr}}{ k_i}{ v_{rv}}{\sigma _0}{ g_0}+2i\mathrm {e}^{2i\omega T_{cr}}{ k_i}\omega \right. \\&\quad -\,4{\omega }^{2}{ h_1}\mathrm {e}^{2i\omega T_{cr}}{ v_{rv}}{\sigma _0}{ g_0}-8i{ \omega }^{3}{ h_1}\mathrm {e}^{2i\omega T_{cr}} \\&-\,2i\omega { K_0}{ v_{rv}}{\sigma _0}{ g_0}+4{ K_0}{\omega }^{2}+2i \omega \mathrm {e}^{2i\omega T_{cr}}{ v_{rv}}{\sigma _0}{ g_0}\\&-\,4{ \omega }^{2}\mathrm {e}^{2i\omega T_{cr}}-8i{\omega }^{3}\mathrm {e}^{2i\omega T_{cr}}{ v_{rv}}{ \sigma _0}{ g_0} \\&+\,16{\omega }^{4}\mathrm {e}^{2i\omega T_{cr}}+4{{\mathrm {e}^{i\omega T_{cr}}}} ^{2}{ h_2}{ v_{rv}}{ g_1}{ h_0}{\omega }^{2} \\&\left. +2i \omega { K_0}\mathrm {e}^{2i\omega T_{cr}}{ v_{rv}}{\sigma _0}{ g_0}-4{\omega }^{2}{ K_0}\mathrm {e}^{2i\omega T_{cr}}\right) \\ b_{12}= & {} 4 {\omega }^{3}\mathrm {e}^{2i\omega T_{cr}} \\&(2i{\omega }^{2}{ h_0} {\sigma _1}{ h_3}+{ h_2}\omega { h_0}{ h_3}\\&\quad -\, i{ v_{rv}}{\sigma _0}{ g_0}{\sigma _1}{ h_4} {Re_1}+{\sigma _1}{ h_4}{Im_1}{ v_{rv}}{\sigma _0}{ g_0} \\&\quad +\,{h_0}{\sigma _1}{ h_3}\omega { v_{rv}}{\sigma _0}{ g_0}+2i\omega {\sigma _1}{ h_4}{Im_1} \\&\quad -\,i{ h_4}{Re_1}{ h_2}+{ h_2}{ h_4}{Im_1}+2{\sigma _1}{ h_4}\omega {Re_1})/ \\&(\mathrm {e}^{2i\omega T_{cr}}{ k_i}{ v_{rv}}{\sigma _0}{ g_0}+2i\mathrm {e}^{2i\omega T_{cr}}{ k_i}\omega \\&\quad -\,4{\omega }^{2}{h_1}\mathrm {e}^{2i\omega T_{cr}}{ v_{rv}}{\sigma _0}{ g_0}-8i{ \omega }^{3}{ h_1}\mathrm {e}^{2i\omega T_{cr}} \\&-\,2i\omega { K_0}{ v_{rv}}{\sigma _0}{ g_0}+4{ K_0}{\omega }^{2}\\&\quad +\,2i \omega \mathrm {e}^{2i\omega T_{cr}}{ v_{rv}}{\sigma _0}{ g_0}-4{ \omega }^{2}\mathrm {e}^{2i\omega T_{cr}} \\&\quad -\,8i{\omega }^{3}\mathrm {e}^{2i\omega T_{cr}}{ v_{rv}}{ \sigma _0}{ g_0}+16{\omega }^{4}\mathrm {e}^{2i\omega T_{cr}} \\&\quad +\,4{{\mathrm {e}^{i\omega T_{cr}}}} ^{2}{ h_2}{ v_{rv}}{ g_1}{ h_0}{\omega }^{2} \\&\quad +\,2i \omega { K_0}\mathrm {e}^{2i\omega T_{cr}}{ v_{rv}}{\sigma _0}{ g_0}-4{\omega }^{2}{ K_0}\mathrm {e}^{2i\omega T_{cr}}) \\ b_{13}= & {} -\,\omega \mathrm {e}^{2i\omega T_{cr}} \\&\left( 2i{\omega }^{2}{ h_0}{\sigma _1}{ h_3}+{ h_2}\omega { h_0}{ h_3} \right. \\&\quad -\,i{ v_{rv}}{\sigma _0}{ g_0}{\sigma _1}{ h_4}{Re_1}+{\sigma _1}{ h_4}{Im_1}{ v_{rv}}{\sigma _0 }{ g_0} \\&\quad +\, {h_0}{\sigma _1}{ h_3}\omega { v_{rv}}{\sigma _0}{ g_0}+2i\omega {\sigma _1}{ h_4} {Im_1} \\&\quad \left. -i{h_4}{Re_1}{ h_2}+{ h_2}{ h_4}{ Im_1}+2{\sigma _1}{ h_4}\omega {Re_1} \right) / \\&\left( {{ \mathrm {e}^{2i\omega T_{cr}}}}{ k_i}{ v_{rv}}{\sigma _0}{ g_0}+2i{{ \mathrm {e}^{2i\omega T_{cr}}}}{ k_i}\omega \right. \\&\quad -\,4{\omega }^{2}{ h_1}{{\mathrm {e}^{2i\omega T_{cr}}}}{ v_{rv}}{\sigma _0}{ g_0}-8i{\omega }^{3}{ h_1} \mathrm {e}^{2i\omega T_{cr}} \\&\quad -\,2i\omega { K_0}{ v_{rv}}{\sigma _0}{ g_0}+4{ K_0}{\omega }^{2} \\&\quad +\,2i\omega \mathrm {e}^{2i\omega T_{cr}}{ v_{rv}}{\sigma _0}{ g_0}-4{\omega }^{2}\mathrm {e}^{2i\omega T_{cr}} \\&\quad -\,8i{ \omega }^{3}\mathrm {e}^{2i\omega T_{cr}}{ v_{rv}}{\sigma _0}{ g_0}+16{ \omega }^{4}\mathrm {e}^{2i\omega T_{cr}} \\&\quad +\,4\mathrm {e}^{2i\omega T_{cr}}{ h_2}{ v_{rv}}{ g_1}{ h_0}{\omega }^{2} \\&\quad +\,2i\omega { K_0}{{\mathrm {e}^{2i\omega T_{cr}}}}{ v_{rv}}{\sigma _0}{ g_0} \\&\quad \left. -4{\omega }^{2}{ K_0}{ {\mathrm {e}^{i\omega T_{cr}}}}\right) \end{aligned}$$
$$\begin{aligned} b_{14}= & {} \left( -4{{ h_0}}^{2}{\sigma _1}{ h_3}{\omega }^{3}\mathrm {e}^{2i\omega T_{cr}}{ v_{rv}}{ g_1} \right. \\&\quad -\,4{\sigma _1}{ h_4 }{\omega }^{2}{Im_1}\mathrm {e}^{2i\omega T_{cr}}{ v_{rv}}{ g_1}{ h_0} \\&\quad +\,2i{\omega }^{2}{ K_0}\mathrm {e}^{2i\omega T_{cr}}{ h_0}{ h_3}-4 {\omega }^{3}{ h_1}\mathrm {e}^{2i\omega T_{cr}}{ h_0}{ h_3} \\&\quad -\,4{\omega }^{2}{ h_1}\mathrm {e}^{2i\omega T_{cr}}{ h_4}{Im_1}-8i{\omega }^{3}{{ \mathrm {e}^{2i\omega T_{cr}}}}{ h_4}{Im_1} \\&\quad -\,8i{\omega }^{4}\mathrm {e}^{2i\omega T_{cr}}{ h_0}{ h_3}+\mathrm {e}^{2i\omega T_{cr}}{ k_i}{ h_0}{ h_3}\omega \\&\quad +\,\mathrm {e}^{2i\omega T_{cr}}{ k_i}{ h_4}{Im_1}+2\omega {{\mathrm {e}^{i\omega T_{cr}}}}{ h_4}{Re_1} \\&\quad -\,i\mathrm {e}^{2i\omega T_{cr}}{ k_i}{ h_4}{Re_1} +4i{\omega }^{2}{ h_1}\mathrm {e}^{2i\omega T_{cr}}{ h_4}{Re_1} \\&\quad -\,2 \omega { K_0}{ h_4}{Re_1}+2i\omega { K_0}{{ ed}}^{2}{ h_4}{Im_1}\\&\quad +\,2i\omega \mathrm {e}^{2i\omega T_{cr}}{ h_4} {Im_1} +2\omega { K_0}\mathrm {e}^{2i\omega T_{cr}}{ h_4}{Re_1} \\&\quad -\,2i{\omega }^{2}{ K_0}{ h_0}{ h_3}-2i\omega { K_0}{ h_4}{Im_1} \\&\quad -\,8{\omega }^{3}\mathrm {e}^{2i\omega T_{cr}}{ h_4} {Re_1} \\&\quad +\,4i{\sigma _1}{ h_4}{\omega }^{2}{Re_1}{{ \mathrm {e}^{2i\omega T_{cr}}}}{ v_{rv}}{ g_1}{ h_0} \\&\quad \left. +2i{\omega }^{2}{{\mathrm {e}^{i\omega T_{cr}}}}{ h_0}{ h_3} \right) \omega / \\&\left( \mathrm {e}^{2i\omega T_{cr}}{ k_i}{ v_{rv}}{\sigma _0}{ g_0}+2i\mathrm {e}^{2i\omega T_{cr}}{ k_i} \omega \right. \\&\quad -\,4{\omega }^{2}{ h_1}\mathrm {e}^{2i\omega T_{cr}}{ v_{rv}}{\sigma _0}{ g_0} \\&\quad -\,8i{\omega }^{3}{ h_1}\mathrm {e}^{2i\omega T_{cr}} -2i \omega { K_0}{ v_{rv}}{\sigma _0}{ g_0}+4{ K_0}{\omega }^{2} \\&\quad +\,2i\omega \mathrm {e}^{2i\omega T_{cr}}{ v_{rv}}{\sigma _0}{ g_0} -4{\omega }^{2}\mathrm {e}^{2i\omega T_{cr}}\\&\quad -\,8i{\omega }^{3}{{\mathrm {e}^{i\omega T_{cr}}}}{ v_{rv}}{\sigma _0}{ g_0} +16{\omega }^{4}{{\mathrm {e}^{i\omega T_{cr}}}} \\&\quad +\,4\mathrm {e}^{2i\omega T_{cr}}{ h_2}{ v_{rv}}{ g_1}{ h_0}{\omega }^{2} \\&\quad \left. +2i\omega { K_0}\mathrm {e}^{2i\omega T_{cr}}{ v_{rv} }{\sigma _0}{ g_0}-4{\omega }^{2}{ K_0}{{\mathrm {e}^{2i\omega T_{cr}}}}\right) \\ b_{31}= & {} b_{32}=0, \\ \end{aligned}$$
$$\begin{aligned} b_{33}= & {} 2{\frac{\omega \left( { h_2}{ h_4}{Im_1}+{ h_2 }\omega { h_0}{ h_3}+{\sigma _1}{ h_4}{Im_1} { v_{rv}}{\sigma _0}{ g_0}+{ h_0}{\sigma _1}{ h_3}\omega { v_{rv}}{\sigma _0}{ g_0} \right) }{{k_i}{ v_{rv}}{\sigma _0}{ g_0}}}, \\ b_{34}= & {} -2{\frac{\omega \left( { h_4}{Im_1}+{ h_0}{ h_3} \omega \right) }{{ v_{rv}}{\sigma _0}{ g_0}}} \\ v_{11}= & {} i\omega +{{\mathrm{e}}^{-i\omega { T_{cr}}}}{K_0}{T_{cr}}\quad v_{21}=Re_1+i Im_1 \\ v_{12}= & {} i{\sigma _1}{ h_4} { A_1} \left( T_{{2}} \right) ^{2}{ b_{12}}{ A_2} \left( T_{{2}} \right) { Im_1} -3i{\sigma _1}{ h_5}{\omega }^{3} { A_1 } \left( T_{{2}} \right) ^{2}{ A_2} \left( T_{{2}} \right) \\&+\,i{\sigma _1}{ h_4}\omega { A_2} \left( T_{{2 }} \right) { A_1} \left( T_{{2}} \right) ^{2}{ b_{14}} +2i{ h_0}{\sigma _1}{ h_3}\omega { A_2 } \left( T_{{2}} \right) { A_1} \left( T_{{2}} \right) ^{2}{ b_{12}} \\&-\,{\sigma _1}{\sigma _0}{ h_3}{ \omega }^{2} { A_1} \left( T_{{2}} \right) ^{2}{ A_2} \left( T_{{2}} \right) {Re_1} -{\sigma _1}{ h_4} { A_1} \left( T_{{2}} \right) ^{2}{ b_{12}} { A_2} \left( T_{{2}} \right) {Re_1} \\&-\,i{\sigma _1}{ h_4 }\omega { A_1} \left( T_{{2}} \right) ^{2}{ A_2} \left( T_{{2}} \right) { b_{34}} -3i{\sigma _1}{\sigma _0}{ h_3}{\omega }^{2} { A_1} \left( T_{{2}} \right) ^{2}{ A_2} \left( T_{{2}} \right) {Im_1} \\&+\,i{ {\mathrm{e}}^{-i\omega { T1c}}}{ K_0}{ k_1}{ A_1} \left( T_{{2}} \right) \omega \\ v_{22}= & {} -2i{ h_0}{ h_3}\omega { A_2} \left( T_{{2}} \right) { A_1} \left( T_{{2}} \right) ^{2}{ b_{12}} -i{ h_4}\omega { A_2} \left( T_{{2}} \right) { A_1 } \left( T_{{2}} \right) ^{2}{ b_{14}} \\&+\,i{ h_4}\omega { A_1} \left( T_{{2}} \right) ^{2}{ A_2} \left( T_{{2}} \right) { b_{34}} +{\sigma _0}{ h_3}{ \omega }^{2} { A_1} \left( T_{{2}} \right) ^{2}{ A_2} \left( T_{{2}} \right) {Re_1} \\&+\,{ h_4}{ A_1} \left( T_{{2}} \right) ^{2}{ b_{12}}{ A_2} \left( T_{{2}} \right) {Re_1} -i{ h_4}{ A_1} \left( T_{{2}} \right) ^{2}{ b_{12}}{ A_2} \left( T_ {{2}} \right) {Im_1} \\&+\,3i{ h_5}{\omega }^{3} { A_1} \left( T_{{2}} \right) ^{2}{ A_2} \left( T_{{2}} \right) +3i{\sigma _0}{ h_3}{\omega }^{2} { A_1} \left( T_{{2}} \right) ^{2}{ A_2} \left( T_{{2}} \right) {Im_1} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Wang, J. & Barry, O.R. Nonlinear vibration analysis in precision motion stage with PID and time-delayed feedback controls. Nonlinear Dyn 101, 439–464 (2020). https://doi.org/10.1007/s11071-020-05779-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05779-0

Keywords

Navigation