Skip to main content
Log in

Disturbance rejection and performance analysis for nonlinear systems based on nonlinear equivalent-input-disturbance approach

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a nonlinear equivalent-input-disturbance (NEID) approach to rejecting an unknown exogenous disturbance in a nonlinear system. An NEID compensator has two parts: a conventional equivalent-input-disturbance estimator and a nonlinear state feedback term. This design ensures that only the exogenous disturbance is rejected and the useful nonlinearity of the system is retained. Unlike other active disturbance-rejection methods, a Lipschitz condition is not necessary to guarantee the convergence of the observation error. Analysis of control performance provides upper bounds for the evaluation of disturbance rejection and the degree of nonlinearity retention. Numerical examples show the validity and superiority of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hassan, M.F., Hammuda, M.: A new approach for constrained chaos synchronization with application to secure data communication. J. Frankl. Inst. 356, 6697–6723 (2019)

    Article  MathSciNet  Google Scholar 

  2. Li, P., Dai, C., Zhang, D., Yang, Y.: Imperfect bifurcations in an initially curved plate loaded by incompressible axial airflow. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-05360-4

    Article  Google Scholar 

  3. Goldberger, A.L.: Applications of chaos to physiology and medicine. In: Kim, J.H., Stringer, J. (eds.) Applied Chaos, pp. 321–331. Wiley, New York (1992)

    Google Scholar 

  4. Ottino, J.M.: The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press, New York (1989)

    MATH  Google Scholar 

  5. Schiff, S.J., Jerger, K., Duong, D.H., Chang, T., Spano, M.L., Ditto, W.L.: Controlling chaos in the brain. Nature 370, 615–620 (1994)

    Article  Google Scholar 

  6. Li, S., Ma, X., Biao, X., Lai, S.K., Zhang, W.: Suppressing homoclinic chaos for a weak periodically excited non-smooth oscillator. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-05380-0

    Article  Google Scholar 

  7. Chen, G., Lai, D.: Anticontrol of chaos via feedback. In: Proceedings of the 36th IEEE Conference on Decision ANC Control. San Diego, CA (1997)

  8. Moradi, H., Vossoughi, G.: Multivariable control of the bifurcation and harmonic perturbations to improve the performance of air-handling units. ISA Trans. 60, 119–127 (2016)

    Article  Google Scholar 

  9. Chen, W.H., Ballance, D.J., Gawthrop, P.J., O’Reilly, J.: A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 47(4), 932–938 (2000)

    Article  Google Scholar 

  10. Chen, W.H.: Harmonic disturbance observer for nonlinear systems. J. Dyn. Syst. Meas. Control 125(1), 114–117 (2003)

    Article  Google Scholar 

  11. Kim, K.S., Rew, K.H., Kim, S.: Disturbance observer for estimating higher order disturbances in time series expansion. IEEE Trans. Autom. Control. 55(8), 1905–1911 (2010)

    Article  MathSciNet  Google Scholar 

  12. Song, J., Niu, Y., Zou, Y.: Finite-time stabilization via sliding mode control. IEEE Trans. Autom. Control. 62(3), 1478–1483 (2017)

    Article  MathSciNet  Google Scholar 

  13. Mobayen, S., Baleanu, D.: Stability analysis and controller design for the performance improvement of disturbed nonlinear systems using adaptive global sliding mode control approach. Nonlinear Dyn. 83, 1557–1565 (2016)

    Article  MathSciNet  Google Scholar 

  14. Bai, W., Zhou, Q., Li, T., Li, H.: Adaptive reinforcement learning neural network control for uncertain nonlinear system with input saturation. IEEE Trans. Cybernet. (2019). https://doi.org/10.1109/TCYB.2019.2921057

    Article  Google Scholar 

  15. Yang, H., Liu, J.: An adaptive RBF neural network control method for a class of nonlinear systems. IEEE/CAA J. Autom. Sin. 5(2), 457–462 (2018)

    Article  MathSciNet  Google Scholar 

  16. Sun, Z.Y., Shao, Y., Chen, C.C.: Fast finite-time stability and its application in adaptive control of high-order nonlinear system. Automatica 106, 339–348 (2019)

    Article  MathSciNet  Google Scholar 

  17. Chen, B.S., Tsang, C.S., Uang, H.J.: Mixed \(H_2/H_\infty \) fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach. IEEE Trans. Fuzzy Syst. 8(3), 249–265 (2000)

    Article  Google Scholar 

  18. Liu, C., Li, H., Gao, J., Xu, D.: Robust self-triggered min-max model predictive control for discrete-time nonlinear systems. Automatica 89, 333–339 (2018)

    Article  MathSciNet  Google Scholar 

  19. Ohishi, K., Nakao, M., Ohnishi, K., Miyachi, K.: Microprocessor-controlled dc motor for load-insensitive position servo system. IEEE Trans. Ind. Electron. 34(1), 44–49 (1987)

    Article  Google Scholar 

  20. Ding, S.H., Chen, W.H., Mei, K., Murray-Smith, D.J.: Disturbance observer design for nonlinear systems represented by input-output models. IEEE Trans. Ind. Electron. 67(2), 1222–1232 (2020)

    Article  Google Scholar 

  21. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  22. Ran, M., Wang, Q., Dong, C.: Active disturbance rejection control for uncertain nonaffine-in-control nonlinear systems. IEEE Trans. Autom. Control 62(11), 5830–5836 (2017)

    Article  MathSciNet  Google Scholar 

  23. Huang, Y., Xue, W.: Active disturbance rejection control: methodology and theoretical analysis. ISA Trans. 53(4), 963–976 (2014)

    Article  MathSciNet  Google Scholar 

  24. She, J., Fang, M.X., Ohyama, Y., Kobayashi, H., Wu, M.: Improving disturbance-rejection performance based on an equivalent-input-disturbance approach. IEEE Trans. Ind. 55(1), 380–389 (2008)

    Article  Google Scholar 

  25. Sakthivel, R., Kaviarasan, B., Selvaraj, P., Karimi, H.R.: EID-based sliding mode investment policy design for fuzzy stochastic jump financial systems. Nonlinear Anal. Hybrid Syst. 31, 100–108 (2019)

    Article  MathSciNet  Google Scholar 

  26. Zhai, J., Karimo, H.R.: Universal adaptive control for uncertain nonlinear systems via output feedback. Inf. Sci. 500, 140–155 (2019)

    Article  MathSciNet  Google Scholar 

  27. Chagra, W., Degachi, H., Ksouri, M.: Nonlinear model predictive control based on Nelder Mead optimization method. Nonlinear Dyn. 92, 127–138 (2018)

    Article  Google Scholar 

  28. Persis, C.D., Jayawardhana, B.: On the internal model principle in the coordination of nonlinear systems. IEEE Trans. Control Netw. Syst. 1(3), 272–282 (2014)

    Article  MathSciNet  Google Scholar 

  29. Chen, W., Yang, J., Guo, L., Li, S.: Disturbance-observer-based control and related methods-an overview. IEEE Trans. Ind. Electron. 632, 1083–1095 (2016)

  30. Gao, F., Wu, M., She, J., Cao, W.: Disturbance rejection in nonlinear systems based on equivalent-input-disturbance approach. Appl. Math. Comput. 282, 244–253 (2016)

    MathSciNet  MATH  Google Scholar 

  31. She, J., Xin, X., Pan, Y.: Equivalent-input-disturbance approach-analysis and application to disturbance rejection in dual-stage feed drive control system. IEEE/ASME Trans. Mechatron. 16(2), 330–340 (2011)

    Article  Google Scholar 

  32. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upper Saddle River (2002)

  33. Doyle, J.C., Francis, B.A., Tannenbaum, A.R.: Feedback Contorl Theory. Courier Corporation, North Chelmsford (2013)

Download references

Acknowledgements

This work was supported in part by the National Key R&D Program of China under Grant 2017YFB1300900; the National Natural Science Foundation of China under Grant 61873348; the Hubei Provincial Natural Science Foundation of China under Grant 2015CFA010; and the 111 Project, China under Grant B17040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhua She.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Stability of the NEID-based disturbance-rejection system for (4) is analyzed below.

The state-space representation of the NEID-based disturbance-rejection system is

$$\begin{aligned} \frac{{\mathrm{d}}{\xi }(t)}{{\mathrm{d}}t}=\bar{A}{\xi }(t)+\bar{B}f(\hat{x}(t))+\bar{B}_b{f}(x(t))+\bar{B}_dd(t), \end{aligned}$$
(A.1)

where

$$\begin{aligned} \bar{A}= & {} { \left[ \begin{array}{ccc} A &{}0 &{} -BC_{F}\\ 0 &{} A-LC &{} BC_F \\ 0&{}-B_{F}B^{+}LC &{} A_F+B_FC_F \end{array} \right] },\\ \bar{B}= & {} { \left[ \begin{array}{c} B \\ 0\\ 0 \end{array} \right] },~ \bar{B}_b= \left[ \begin{array}{c} B \\ -B\\ 0 \end{array} \right] ,~ \bar{B}_d= \left[ \begin{array}{c} 0 \\ -B\\ 0 \end{array} \right] . \end{aligned}$$

If \(\bar{A}\) is Hurwitz, then, for any positive-definite symmetric matrix K, the solution, \(P_g\), of

$$\begin{aligned} P_g\bar{A}+\bar{A}^{\mathrm{T}}P_g=-K \end{aligned}$$
(A.2)

is positive definite. Let

$$\begin{aligned} V_g(\xi (t))=\xi ^{\mathrm{T}}(t)P_g\xi (t) \end{aligned}$$
(A.3)

be a Lyapunov function candidate of (A.1). The derivative of \(V_g(\xi (t))\) along the trajectories of (A.1) is given by

$$\begin{aligned} \begin{aligned} \frac{{\mathrm{d}}{V_g(\xi (t))}}{{\mathrm{d}}t}&=-\xi ^{\mathrm{T}}(t)K\xi (t)+{{\Pi }}_1+{{\Pi }}_2+{{\Pi }}_3, \end{aligned} \end{aligned}$$
(A.4)

where

$$\begin{aligned} \begin{aligned}&{{\Pi }}_1{=}2\xi ^{\mathrm{T}}(t)P_g\bar{B}f(\hat{x}(t)){,}~{{\Pi }}_2{=}2\xi ^{\mathrm{T}}(t)P_g\bar{B}_bf({x}(t)){,}\\&{{\Pi }}_3{=}2\xi ^{\mathrm{T}}(t)P_g\bar{B}_dd(t){.}\\ \end{aligned} \end{aligned}$$

Since

$$\begin{aligned}&\begin{aligned} {{\Pi }}_1&\le \frac{1}{\theta _1}\xi ^{\mathrm{T}}(t){{\Gamma }}_1\xi (t)+\theta _1f^{\mathrm{T}}(\hat{x}(t))f(\hat{x}(t))\\&\le \frac{1}{\theta _1}\xi ^{\mathrm{T}}(t){{\Gamma }}_1\xi (t)+\theta _1\Vert f\Vert ^2_\infty \\&\le \frac{1}{\theta _1}\xi ^{\mathrm{T}}(t){{\Gamma }}_1\xi (t)+\theta _1\varphi ^2, \end{aligned} \end{aligned}$$
(A.5)
$$\begin{aligned}&\begin{aligned} {{\Pi }}_2&\le \frac{1}{\theta _2}\xi ^{\mathrm{T}}(t){{\Gamma }}_2\xi (t)+\theta _2f^{\mathrm{T}}({x}(t))f({x}(t))\\&\le \frac{1}{\theta _2}\xi ^{\mathrm{T}}(t){{\Gamma }}_2\xi (t)+\theta _2\Vert f\Vert ^2_\infty \\&\le \frac{1}{\theta _2}\xi ^{\mathrm{T}}(t){{\Gamma }}_2\xi (t)+\theta _2\varphi ^2, \end{aligned} \end{aligned}$$
(A.6)

and

$$\begin{aligned} \begin{aligned} {{\Pi }}_3&\le \frac{1}{\theta _3}\xi ^{\mathrm{T}}(t){{\Gamma }}_3\xi (t)+\theta _3d^{\mathrm{T}}(t)d(t)\\&\le \frac{1}{\theta _3}\xi ^{\mathrm{T}}(t){{\Gamma }}_3\xi (t)+\theta _3d^2_M, \end{aligned} \end{aligned}$$
(A.7)

(A.4) becomes

$$\begin{aligned} \begin{aligned}&\frac{{\mathrm{d}}{V_g(\xi (t))}}{{\mathrm{d}}t}\\&\quad \le -\xi ^{\mathrm{T}}(t)K\xi (t) +\frac{1}{\theta _1}\xi ^{\mathrm{T}}(t){{\Gamma }}_1\xi (t) +\frac{1}{\theta _2}\xi ^{\mathrm{T}}(t){{\Gamma }}_2\xi (t)\\&\qquad \,+\frac{1}{\theta _3}\xi ^{\mathrm{T}}(t){{\Gamma }}_3\xi (t)+\theta _1\varphi ^2+\theta _2\varphi ^2+\theta _3d_M^2\\&\quad \, \le -[\lambda _{\mathrm{min}}(K)-\frac{1}{\theta _1}\lambda _{\mathrm{max}}({{\Gamma }}_1)-\frac{1}{\theta _2}\lambda _{\mathrm{max}}({{\Gamma }}_2) \\&\qquad -\frac{1}{\theta _3}\lambda _{\mathrm{max}}({{\Gamma }}_3)]\Vert \xi \Vert _2^2+\theta _1\varphi ^2+\theta _2\varphi ^2+\theta _3d^2_M, \end{aligned} \end{aligned}$$

where \(\theta _1,~\theta _2,~\theta _3\) are positive numbers and

$$\begin{aligned} {{\Gamma }}_1{=}P_g\bar{B}\bar{B}^{\mathrm{T}}P_g{,}~{{\Gamma }}_2{=}P_g\bar{B}_b\bar{B}_b^{\mathrm{T}}P_g{,}~{{\Gamma }}_3{=}P_g\bar{B}_d\bar{B}_d^{\mathrm{T}}P_g{.} \end{aligned}$$

It is easy to check that there exist positive numbers \(\theta _1,~\theta _2,~\theta _3\), such that

$$\begin{aligned} \begin{aligned} \lambda _{\mathrm{min}}(K)>\frac{\lambda _{\mathrm{max}}({{\Gamma }}_1)}{\theta _1} +\frac{\lambda _{\mathrm{max}}({{\Gamma }}_2)}{\theta _2} +\frac{\lambda _{\mathrm{max}}({{\Gamma }}_3)}{\theta _3} \end{aligned} \end{aligned}$$
(A.8)

is true. Thus,

$$\begin{aligned} \frac{{\mathrm{d}}{V_g(\xi (t))}}{{\mathrm{d}}t}<0, \end{aligned}$$

which means that the NEID-based disturbance-rejection system is global uniformly boundedness for (4).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., She, J., Wu, M. et al. Disturbance rejection and performance analysis for nonlinear systems based on nonlinear equivalent-input-disturbance approach. Nonlinear Dyn 100, 3497–3511 (2020). https://doi.org/10.1007/s11071-020-05699-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05699-z

Keywords

Navigation