Skip to main content
Log in

Synchronous whirling of spinning homogeneous elastic cylinders: linear and weakly nonlinear analyses

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Stationary whirling of slender and homogeneous (continuous) elastic shafts rotating around their axis, with pin–pin boundary condition at the ends, is revisited by considering the complete deformations in the cross section of the shaft. The stability against a synchronous sinusoidal disturbance of any wavelength is investigated and the analytic expression of the buckling amplitude is derived in the weakly nonlinear regime by considering both geometric and material (hyper-elastic) nonlinearities. The bifurcation is supercritical in the long wavelength domain for any elastic constitutive law, and subcritical in the short wavelength limit for a limited range of nonlinear material parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Krämer, E. (ed.): Dynamics of Rotors and Foundations. Springer, Berlin (1993)

    Google Scholar 

  2. Genta, G. (ed.): Dynamics of Rotating Systems. Springer, Berlin (2005)

    MATH  Google Scholar 

  3. Chen, W.J., Gunter, E.J. (eds.): Introduction to Dynamics of Rotor-Bearing Systems. Trafford, Victoria (2005)

    Google Scholar 

  4. Ehrich, F.F.: Shaft whirl induced by rotor internal damping. J. Appl. Mech. 31, 279–282 (1964)

    Article  Google Scholar 

  5. Noah, S., Sundarajan, P.: Significance of considering nonlinear effects in predicting the dynamic behavior of rotating machinery. J. Vib. Control 1, 431–458 (1995)

    Article  MathSciNet  Google Scholar 

  6. Yamamoto, T., Ishida, Y. (eds.): Linear and Nonlinear Rotordynamics: A Modern Treatment with Applications. Wiley, Hoboken (2012)

    Google Scholar 

  7. Shaw, J., Shaw, S.W.: Instabilities and bifurcations in a rotating shaft. J. Sound Vib. 132, 227–244 (1989)

    Article  MathSciNet  Google Scholar 

  8. Kurnik, W.: Stability and bifurcation analysis of a nonlinear transversally loaded rotating shaft. Nonlinear Dyn. 5, 39–52 (1994)

    Google Scholar 

  9. Hosseini, S.A.A.: Dynamic stability and bifurcation of a nonlinear in-extensional rotating shaft with internal damping. Nonlinear Dyn. 74, 345–358 (2013)

    Article  MathSciNet  Google Scholar 

  10. Henry, D. (ed.): Geometric Theory of Semi-linear Parabolic Equations. Springer, Berlin (1981)

    Google Scholar 

  11. Ogden, R.W.: Non-linear Elastic Deformations. Ellis Horwood Limited, Chichester (1984)

    MATH  Google Scholar 

  12. Haslach, H.W.: Post-buckling behavior of columns with non-linear constitutive equations. Int. J. Non-Linear Mech. 20, 53–267 (1985)

    Article  Google Scholar 

  13. Cveticanin, L.: Large in-plane motion of a rotor. J. Vib. Acoust. 120, 267–282 (1998)

    Article  Google Scholar 

  14. Haughton, D.M., Ogden, R.W.: Bifurcation of finitely deformed rotating elastic cylinders. Q. J. Mech. Appl. Math. 33, 251–265 (1980)

    Article  MathSciNet  Google Scholar 

  15. Richard, F., Chakrabarti, A., Audoly, B., Pomeau, Y., Mora, S.: Buckling of a spinning elastic cylinder: linear, weakly nonlinear and post-buckling analyses. Proc. R. Soc. A 474, 20180242 (2018)

    Article  MathSciNet  Google Scholar 

  16. Mora, S., Richard, F.: Buckling of a compliant hollow cylinder attached to a rigid shaft. Int. J. Solids Struct. 167, 142–155 (2019)

    Article  Google Scholar 

  17. Macosko, C.W.: Rheology: Principles, Measurements and Applications. Wiley, New York (1994)

    Google Scholar 

  18. Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11, 582–592 (1940)

    Article  Google Scholar 

  19. Rivlin, R.S.: Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 241, 379–397 (1948)

    MathSciNet  MATH  Google Scholar 

  20. Gâteaux, R.: Fonctions d’une infinité de variables indépendantes. Bull. Soc. Math. France 47, 70–96 (1919)

    Article  MathSciNet  Google Scholar 

  21. Koiter, W.T.: On the stability of an elastic equilibrium. Ph.D. thesis, Techische Hooge School Delft (1945)

  22. Hutchinson, J.W.: Imperfection sensitivity of externally pressurized spherical shells. J. Appl. Mech. 34, 49–55 (1967)

    Article  Google Scholar 

  23. Hutchinson, J.W., Koiter, W.T.: Postbuckling theory. Appl. Mech. Rev. 23, 1353–1366 (1970)

    Google Scholar 

  24. Budiansky, B.: Theory of buckling and post-buckling behavior of elastic structures. Adv. Appl. Mech. 14, 1–65 (1974)

    Article  Google Scholar 

  25. Peek, R., Triantafyllidis, N.: Worst shapes of imperfections for space trusses with many simultaneously buckling members. Int. J. Solids Struct. 29, 2385–2402 (1992)

    Article  Google Scholar 

  26. Peek, R., Kheyrkhahan, M.: Postbuckling behavior and imperfection sensitivity of elastic structures by the Lyapunov–Schmidt–Koiter approach. Comput. Methods Appl. Mech. Eng. 108(3), 261–279 (1993)

    Article  MathSciNet  Google Scholar 

  27. van der Heijden, A.: WT Koiter’s Elastic Stability of Solids and Structures. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  28. Chakrabarti, A., Mora, S., Richard, F., Phou, T., Fromental, J.M., Pomeau, Y., Audoly, B.: Selection of hexagonal buckling patterns by the elastic Rayleigh–Taylor instability. J. Mech. Phys. Solids 121, 234–257 (2018)

    Article  MathSciNet  Google Scholar 

  29. Triantafyllidis, N.: Stability of solids: from structures to materials. Ecole Polytechnique (2011)

  30. Normand, C., Pomeau, Y., Velarde, M.G.: Convective instability: a physicist’s approach. Rev. Mod. Phys. 49(3), 581 (1977)

    Article  MathSciNet  Google Scholar 

  31. Logg, A., Mardal, K.A., Wells, G.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012)

    Book  Google Scholar 

  32. Amestoy, P.R., Duff, I.S., L’Escellent, J.Y., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23, 15–41 (2001)

    Article  MathSciNet  Google Scholar 

  33. Lestringant, C., Audoly, B.: Asymptotically exact strain-gradient models for nonlinear slender elastic structures: a systematic derivation method. J. Mech. Phys. Solids 136, 103730 (2019)

    Article  MathSciNet  Google Scholar 

  34. Mora, S., Abkarian, M., Tabuteau, H., Pomeau, Y.: Surface instability of soft solids under strain. Soft Matter 7, 10612–10619 (2011)

    Article  Google Scholar 

  35. Mora, S., Phou, T., Fromental, J.M., Pomeau, Y.: Gravity driven instability in solid elastic layers. Phys. Rev. Lett. 113, 178301 (2014)

    Article  Google Scholar 

  36. Mora, S., Ando, E., Phou, T., Fromental, J.M., Pomeau, Y.: The shape of hanging elastic cylinders. Soft Matter 15, 5464 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Corrado Maurini is thanked for his help with FEniCS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Mora.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Expression of the functions defining the second-order correction to the displacement

Appendix A: Expression of the functions defining the second-order correction to the displacement

The expressions of the functions g defined by Eqs. 3437 are given in this appendix. These expressions are obtained by inserting Eqs. 30 and 31 into Eqs. 69 and in the boundary conditions Eqs. 10 at order \(\varepsilon ^2\).

$$\begin{aligned}&g_{u1}(r)=\frac{\xi ^2}{r_0}\left\{ -\frac{r}{4r_0}(r_0 k)^2+\left( 4 \frac{r}{r}-\frac{r^3}{r^3_0}\right) \frac{(kr_0)^4}{32}\right. \\&\quad \left. +\,\left( 7 \frac{r}{r_0}-6 \frac{r^3}{r_0^3}+2 \frac{r^5}{r^5_0}\right) \frac{(kr_0)^6}{128} +\cdots \right\} \\&g_{u3}(r)=\frac{\xi ^2}{r_0}\left\{ -\frac{r}{8r_0}( kr_0)^2\right. \\&\quad -\,\left( (2 \beta -9) \frac{r}{r_0}+3 \frac{r^3}{r^3_0}\right) \frac{(kr_0)^4}{32}\\&\quad +\,\left( (116 \beta -230) \frac{r}{r_0} +54 \frac{r^3}{r_0^3}\right. \\&\quad \left. \left. +\,(12 \beta -33) \frac{r^5}{r^5_0}\right) \frac{(kr_0)^6}{1152} +\cdots \right\} \\&g_{u5}(r)=\frac{\xi ^2}{r_0}\left\{ \frac{r}{8r_0} (kr_0)^2\right. \\&\quad -\,\frac{r^3}{16r_0^3}(kr_0)^4+\left( (150 \beta -269) \frac{r}{r_0}\right. \\&\quad +\,(20 \beta +198) \frac{r^3}{r_0^3}\\&\quad \left. \left. +\,(-30 \beta -19) \frac{r^5}{r^5_0}\right) \frac{(kr_0)^6}{1536} +\cdots \right\} \\&g_{u9}(r)=\frac{\xi ^2}{r_0}\left\{ \frac{r}{8r_0} (kr_0)^2-\left( 6 \frac{r}{r_0}-3 \frac{r^3}{r_0^3}\right) \frac{(kr_0)^4}{16}\right. \\&\quad +\,\left( (2 \beta +561) \frac{r}{r_0}+(60 \beta -422) \frac{r^3}{r_0^3}\right. \\&\quad \left. \left. +\,(-26 \beta +111) \frac{r^5}{r^5_0}\right) \frac{(kr_0)^6}{1536} +\cdots \right\} \\ \end{aligned}$$
$$\begin{aligned}&g_{v5}(r)=\frac{\xi ^2}{r_0}\left\{ -\frac{r}{8r_0} (kr_0)^2-\left( (150 \beta -269) \frac{r}{r_0}\right. \right. \\&\quad \left. \left. +\,(40 \beta -36) \frac{r^3}{r_0^3}+(-90 \beta +75) \frac{r^5}{r^5_0}\right) \frac{(kr_0)^6}{1536} +\cdots \right\} \\&g_{v9}(r)=\frac{\xi ^2}{r_0}\left\{ -\frac{r}{8r_0} (kr_0)^2+\left( 3 \frac{r}{r_0}-\frac{r^3}{r^3_0}\right) \frac{(kr_0)^4}{8}\right. \\&\quad -\,\left( (2 \beta +561) \frac{r}{r_0}+(-8 \beta -348) \frac{r^3}{r_0^3}\right. \\&\left. \left. \quad +\,(-14 \beta +49)\frac{r^5}{r_0^5}\right) \frac{(kr_0)^6}{1536}+\cdots \right\} \\&g_{w3}(r)=\frac{\xi ^2}{r_0}\left\{ -\frac{kr_0}{8}+(2 \beta -5)\frac{(kr_0)^3}{32}\right. \\&\quad \left. -\,\left( (116 \beta -293)+(36 \beta -63) \frac{r^4}{r^4_0}\right) \frac{(kr_0)^5}{1152} +\cdots \right\} \\&g_{w9}(r)=\frac{\xi ^2}{r_0}\left\{ -\frac{r^2}{8r_0^2} (kr_0)^3\right. \\&\quad -\,\left( (16 \beta -44) \frac{r^2}{r_0^2}\right. \\&\quad \left. \left. +\,(-8 \beta +31) \frac{r^4}{r^4_0}\right) \frac{(kr_0)^5}{192} +\cdots \right\} \\&g_{q1}(r)=\xi ^2k^2\left\{ \frac{1}{4}-\left( 3-8(\beta -1 -6 \gamma ) \frac{r^2}{r_0^2}\right) \frac{(kr_0)^2}{16}\right. \\&\quad - \, \left( (-12 \beta +29+256\gamma )+(64 \beta -120-832\gamma ) \frac{r^2}{r_0^2}\right. \\&\quad \left. \left. +\,(-12 \beta +33+320\gamma ) \frac{r^4}{r_0^4}\right) \frac{(kr_0)^4}{128} +\cdots \right\} \\&g_{q3}(r)=\xi ^2k^2\left\{ \left( \beta +1+4(6 \gamma -\beta +1) \frac{r^2}{r_0^2}\right) \frac{(kr_0)^2}{8}\right. \\&\quad -\,\left( (-44 \beta +515+2304\gamma )\right. \\&\quad +\,(-720 \beta +252+2880\gamma )\frac{r^2}{r_0^2}\\&\quad \left. \left. +\,(180 \beta -153-576\gamma ) \frac{r^4}{r_0^4}\right) \frac{(kr_0)^4}{1152} +\cdots \right\} \\&g_{q5}(r)=\xi ^2 k^2\left\{ (24 \gamma -4 \beta +7) \frac{r^2}{r_0^2} \frac{(kr_0)^2}{8}\right. \\&\quad -\,\left( (-258 \beta +489+2496\gamma ) \frac{r^2}{r_0^2}\right. \\&\quad \left. \left. +\,(-24 \beta -74-960\gamma ) \frac{r^4}{r^4_0}\right) \frac{(kr_0)^4}{384} +\cdots \right\} \\&g_{q9}(r)=\xi ^2 k^2\left\{ -(24 \gamma -4 \beta +7) \frac{r^2}{r_0^2}\frac{(kr_0)^2}{8}\right. \\&\quad +\,\left( (-218 \beta +289+960\gamma ) \frac{r^2}{r_0^2}\right. \\&\quad \left. \left. +\,(72 \beta -106-192\gamma ) \frac{r^4}{r_0^4}\right) \frac{(kr_0)^4}{384} +\cdots \right\} \end{aligned}$$

with \(\gamma =\gamma _{11}+\gamma _{12}+\gamma _{22}\). The other functions g defined in Eqs. 3437 are equal to zero. Note that the boundary conditions Eq. 11 at \(z=0\) and \(z=L\) are fulfilled at order \(\varepsilon ^2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora, S. Synchronous whirling of spinning homogeneous elastic cylinders: linear and weakly nonlinear analyses. Nonlinear Dyn 100, 2089–2101 (2020). https://doi.org/10.1007/s11071-020-05639-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05639-x

Keywords

Navigation