Skip to main content
Log in

A fast and stable first-order method for simulation of flexible beams and cables

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Gradient deficient beam elements (commonly known as cable elements in the literature) based on the absolute nodal coordinate formulation (ANCF) have great potential for large-scale and real-time simulation applications. In this report, a novel and stable first-order integration method for the gradient deficient ANCF element is developed in a simple linear form. The extension of the integration method to the fully parameterized cable element is also discussed. The method involves splitting the elastic potential using the quadrature points involved in the numerical integration of the continuous body and treating the forces developed by the potential at each quadrature point as though it has arisen from a relaxed constraint in the compliant constraints formalism. The integration method exhibits excellent stability properties, scales well, and can be solved efficiently, with only a single linear solve. Efficient methods for computing the required Jacobians and deformation functions and solving the resulting linear equation are discussed. The integration method is tested in three dimensions, on a cable segment formed from multiple elements and compared to other first-order integration methods in terms of the speed and accuracy. The method is demonstrated via simulating various systems, including a pendulum, a cantilever bar, and a flexible beam dropped onto cylindrical supports. Lastly, the utility and use cases of the proposed integrator are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’98, pp. 43–54. ACM, New York (1998)

  2. Bathe, K.J.: Finite element procedures. Klaus-Jurgen Bathe (2006)

  3. Bauchau, O.A.: Benchmark problems for beam models in flexible multibody dynamics. In: ECCOMAS Thematic Conference on Multibody Dynamics. Zagreb, Croatia (2013)

  4. Berzeri, M., Shabana, A.A.: Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation. J. Sound Vib. 235(4), 539–565 (2000)

    Article  Google Scholar 

  5. Brogliato, B., Brogliato, B.: Nonsmooth Mechanics. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  6. Campanelli, M., Berzeri, M., Shabana, A.A.: Performance of the incremental and non-incremental finite element formulations in flexible multibody problems. J. Mech. Des. 122(4), 498–507 (2000)

    Article  Google Scholar 

  7. Chen, Qz, Acary, V., Virlez, G., Brüls, O.: A nonsmooth generalized-\(\alpha \) scheme for flexible multibody systems with unilateral constraints. Int. J. Numer. Methods Eng. 96(8), 487–511 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J. Appl. Mech. 60(2), 371–375 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Erlicher, S., Bonaventura, L., Bursi, O.S.: The analysis of the generalized-\(\alpha \) method for non-linear dynamic problems. Comput. Mech. 28(2), 83–104 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gantoi, F.M., Brown, M.A., Shabana, A.A.: Ancf finite element/multibody system formulation of the ligament/bone insertion site constraints. J. Comput. Nonlinear Dyn. 5(3), 031,006 (2010)

    Article  Google Scholar 

  11. Gerstmayr, J., Irschik, H.: On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. J. Sound Vib. 318(3), 461–487 (2008)

    Article  Google Scholar 

  12. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45(1–2), 109–130 (2006)

    Article  MATH  Google Scholar 

  13. Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. Comput. Nonlinear Dyn. 8(3), 1–12 (2013)

    Google Scholar 

  14. Kerkkänen, K.S., García-Vallejo, D., Mikkola, A.M.: Modeling of belt-drives using a large deformation finite element formulation. Nonlinear Dyn. 43(3), 239–256 (2006)

    Article  MATH  Google Scholar 

  15. Lacoursière, C.: Ghosts and machines: regularized variational methods for interactive simulations of multibodies with dry frictional contacts. Ph.D. thesis, Umeå University (2007)

  16. Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Nonsmooth Mechanics and Applications, pp. 1–82. Springer, Berlin (1988)

    Chapter  Google Scholar 

  17. Olshevskiy, A., Dmitrochenko, O., Yang, H.I., Kim, C.W.: Absolute nodal coordinate formulation of tetrahedral solid element. Nonlinear Dyn. 88(4), 2457–2471 (2017)

    Article  MATH  Google Scholar 

  18. Orzechowski, G., Shabana, A.A.: Analysis of warping deformation modes using higher order ANCF beam element. J. Sound Vib. 363, 428–445 (2016)

    Article  Google Scholar 

  19. Patel, M., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 230(1), 69–84 (2016)

    Article  Google Scholar 

  20. Rade, L., Westergren, B.: Mathematics Handbook for Science and Engineering, 4th edn. Springer, Berlin (1999)

    MATH  Google Scholar 

  21. Ren, H., Fan, W., Zhu, W.: An accurate and robust geometrically exact curved beam formulation for multibody dynamic analysis. J. Vib. Acoust. 140(1), 011,012 (2018)

    Article  Google Scholar 

  22. Schwab, A., Meijaard, J.: Beam benchmark problems for validation of flexible multibody dynamics codes, pp. 1–13. Warsaw University of Technology (2009)

  23. Schwab, A.L., Meijaard, J.P.: Comparison of three-dimensional flexible beam elements for dynamic analysis: classical finite element formulation and absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 5(1), 1–10 (2009)

    Google Scholar 

  24. Servin, M., Lacoursiere, C., Melin, N.: Interactive simulation of elastic deformable materials. In: SIGRAD 2006. The Annual SIGRAD Conference; Special Theme: Computer Games, 019. Linköping University Electronic Press (2006)

  25. Shabana, A.A.: An absolute nodal coordinate formulation for the large rotation and large deformation analysis of flexible bodies. University of Illinois at Chicago, Tech. rep. (1996)

  26. Shabana, A.A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 1(3), 339–348 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shabana, A.A.: Computational Continuum Mechanics. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  28. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123(4), 606–613 (2000)

    Article  Google Scholar 

  29. Shen, Z., Li, P., Liu, C., Hu, G.: A finite element beam model including cross-section distortion in the absolute nodal coordinate formulation. Nonlinear Dyn. 77(3), 1019–1033 (2014)

    Article  Google Scholar 

  30. Sugiyama, H., Suda, Y.: A curved beam element in the analysis of flexible multi-body systems using the absolute nodal coordinates. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 221(2), 219–231 (2007)

    Article  Google Scholar 

  31. Tournier, M., Nesme, M., Gilles, B., Faure, F.: Stable constrained dynamics. ACM Trans. Graph. 34(4), 132 (2015)

    Article  MATH  Google Scholar 

  32. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123(4), 614–621 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The work reported here was supported by the Natural Sciences and Engineering Research Council Canada (NSERC), CMLabs Simulations, Inc, and the MEDA scholarship of McGill University. The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Hewlett.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hewlett, J., Arbatani, S. & Kövecses, J. A fast and stable first-order method for simulation of flexible beams and cables. Nonlinear Dyn 99, 1211–1226 (2020). https://doi.org/10.1007/s11071-019-05347-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05347-1

Keywords

Navigation