Skip to main content
Log in

A modified time domain subspace method for nonlinear identification based on nonlinear separation strategy

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear factors existing in engineering structures have drawn considerable attention, and nonlinear identification is a competent technique to understand the dynamic characteristics of nonlinear structures. Therefore, in this paper, a novel nonlinear separation subspace identification (NSSI) algorithm based on subspace algorithm and nonlinear separation strategy is proposed to conduct nonlinear parameter identification of nonlinear structures. For the proposed NSSI algorithm, the low-level excitation test is firstly conducted to obtain the transfer matrix in the linear response formula. Then, the obtained transfer matrix is used in the high-level excitation test to calculate the nonlinear response part by the proposed nonlinear separation strategy, and the subspace algorithm is utilized to identify the nonlinear parameter on the modified state-space model including only the nonlinear part. The proposed NSSI algorithm can reduce the coupling error caused by simultaneously processing both the large number part (corresponding to the linear part) and small number part (corresponding to the nonlinear part) in the traditional nonlinear subspace identification (NSI) algorithm. At last, two numerical experiments are given to validate the effectiveness of the developed novel nonlinear identification method. Furthermore, some influence factors are discussed to show the stability of the identification algorithm, and some comparisons between the proposed NSSI method and traditional NSI method are also conducted to demonstrate the advantages of the novel method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Xie, W., Lee, H., Lim, S.: Nonlinear dynamic analysis of MEMS switches by nonlinear modal analysis. Nonlinear Dyn. 31(3), 243–256 (2003)

    Article  MATH  Google Scholar 

  2. Keber, M., Wiercigroch, M.: Dynamics of a vertical riser with weak structural nonlinearity excited by wakes. J. Sound Vib. 315(3), 685–699 (2008)

    Article  Google Scholar 

  3. Yang, Y., Ren, X., Qin, W., Wu, Y., Zhi, X.: Analysis on the nonlinear response of cracked rotor in hover flight. Nonlinear Dyn. 61(1), 183–192 (2010)

    Article  MATH  Google Scholar 

  4. Zhang, J., Du, X.: Time-dependent reliability analysis for function generation mechanisms with random joint clearances. Mech. Mach. Theory 92, 184–199 (2015)

    Article  Google Scholar 

  5. Li, P., Chen, W., Li, D., Yu, R., Zhang, W.: Wear analysis of two revolute joints with clearance in multibody systems. J. Comput. Nonlinear Dyn. 11(1), 011009 (2016)

    Article  Google Scholar 

  6. Worden, K., Tomlinson, G.R.: Nonlinearity in Structural Dynamics: Detection, Identification and Modelling. CRC Press, Boca Raton (2000)

    Book  MATH  Google Scholar 

  7. Trendafilova, I., Van Brussel, H.: Non-linear dynamics tools for the motion analysis and condition monitoring of robot joints. Mech. Syst. Signal Process. 15(6), 1141–1164 (2001)

    Article  Google Scholar 

  8. Worden, K., Farrar, C.R., Haywood, J., Todd, M.: A review of nonlinear dynamics applications to structural health monitoring. Struct. Control Health Monit. 15(4), 540–567 (2008)

    Article  Google Scholar 

  9. Ibanez, P.: Identification of dynamic parameters of linear and non-linear structural models from experimental data. Nucl. Eng. Des. 25(1), 30–41 (1973)

    Article  Google Scholar 

  10. Masri, S., Caughey, T.: A nonparametric identification technique for nonlinear dynamic problems. J. Appl. Mech. 46(2), 433–447 (1979)

    Article  MATH  Google Scholar 

  11. Walter, E., Pronzato, L.: Identification of Parametric Models from Experimental Data. Springer, Berlin (1997)

    MATH  Google Scholar 

  12. Nelles, O.: Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. Springer, Berlin (2013)

    MATH  Google Scholar 

  13. Feldman, M.: Hilbert transform methods for nonparametric identification of nonlinear time varying vibration systems. Mech. Syst. Signal Process. 47(1), 66–77 (2014)

    Article  Google Scholar 

  14. Liu, J., Li, B., Jin, W., Han, L., Quan, S.: Experiments on clearance identification in cantilever beams reduced from artillery mechanism. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 231(6), 1010–1032 (2017)

    Article  Google Scholar 

  15. Wei, S., Peng, Z., Dong, X., Zhang, W.: A nonlinear subspace-prediction error method for identification of nonlinear vibrating structures. Nonlinear Dyn. 91(3), 1605–1617 (2018)

    Article  MATH  Google Scholar 

  16. Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.: Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20(3), 505–592 (2006)

    Article  Google Scholar 

  17. Noel, J., Kerschen, G.: Nonlinear system identification in structural dynamics: 10 more years of progress. Mech. Syst. Signal Process. 83, 2–35 (2017)

    Article  Google Scholar 

  18. Masri, S., Sassi, H., Caughey, T.: Nonparametric identification of nearly arbitrary nonlinear systems. J. Appl. Mech. 49(3), 619–628 (1982)

    Article  MATH  Google Scholar 

  19. Bendat, J.S.: Spectral techniques for nonlinear system analysis and identification. Shock Vib. 1(1), 21–31 (1993)

    Article  Google Scholar 

  20. Richards, C.M., Singh, R.: Identification of multi-degree-of-freedom nonlinear systems under random excitation by the “Reverse Path” spectral method. J. Sound Vib. 213(4), 673–708 (1998)

    Article  Google Scholar 

  21. Adams, D.E., Allemang, R.J.: A frequency domain method for estimating the parameters of a non-linear structural dynamic model through feedback. Mech. Syst. Signal Process. 14(4), 637–656 (2000)

    Article  Google Scholar 

  22. Özer, M.B., Özgüven, H.N.: A new method for localization and identification of non-linearities in structures. In: Proceedings of ESDA 2002: 6th Biennial Conference on Engineering Systems Design and Analysis 2002, pp. 8–11

  23. Arslan, Ö., Aykan, M., Özgüven, H.N.: Parametric identification of structural nonlinearities from measured frequency response data. Mech. Syst. Signal Process. 25(4), 1112–1125 (2011)

    Article  Google Scholar 

  24. Liu, J., Li, B.: Theoretical and experimental identification of clearance nonlinearities for a continuum structure. J. Comput. Nonlinear Dyn. 11(4), 041019 (2016)

    Article  Google Scholar 

  25. Li, B., Han, L., Jin, W., Quan, S.: Theoretical and experimental identification of cantilever beam with clearances using statistical and subspace-based methods. J. Comput. Nonlinear Dyn. 11(3), 031003 (2016)

    Article  Google Scholar 

  26. Marchesiello, S., Garibaldi, L.: A time domain approach for identifying nonlinear vibrating structures by subspace methods. Mech. Syst. Signal Process. 22(1), 81–101 (2008)

    Article  Google Scholar 

  27. Overschee, P.V., Moor, B.D.: Subspace Identification for Linear Systems. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  28. Zhang, M., Wei, S., Peng, Z., Dong, X., Zhang, W.: A two-stage time domain subspace method for identification of nonlinear vibrating structures. Int. J. Mech. Sci. 120, 81–90 (2017)

    Article  Google Scholar 

  29. Noel, J., Marchesiello, S., Kerschen, G.: Subspace-based identification of a nonlinear spacecraft in the time and frequency domains. Mech. Syst. Signal Process. 43(1), 217–236 (2014)

    Article  Google Scholar 

  30. Marchesiello, S., Fasana, A., Garibaldi, L.: Modal contributions and effects of spurious poles in nonlinear subspace identification. Mech. Syst. Signal Process. 74(1), 111–132 (2015)

    Google Scholar 

  31. Filippis, G.D., Noël, J.P., Kerschen, G., Soria, L., Stephan, C.: Model reduction and frequency residuals for a robust estimation of nonlinearities in subspace identification. Mech. Syst. Signal Process. 93(1), 312–331 (2017)

    Article  Google Scholar 

  32. Verhaegen, M.: Identification of the deterministic part of MIMO state space models given in innovations form from input-output data. Automatica 30(1), 61–71 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Markovsky, I., Huffel, S.V.: Overview of total least-squares methods. Signal Process. 87(10), 2283–2302 (2007)

    Article  MATH  Google Scholar 

  34. Adams, D.E., Allemang, R.J.: Characterization of nonlinear vibrating systems using internal feedback and frequency response modulation. J. Vib. Acoust. 121(4), 495–500 (1999)

    Article  Google Scholar 

  35. Ádám, T., Samad, D., József, F.: Influence of discretization method on the digital control system performance. Acta Montan. Slov. 8(4), 197–200 (2003)

    Google Scholar 

  36. Brandt, A.: Noise and Vibration Analysis: Signal Analysis and Experimental Procedures. Wiley, Hoboken (2011)

    Book  Google Scholar 

Download references

Acknowledgements

This work is supported financially by the National Natural Science Foundation of China (51475356).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, B., Miao, H. et al. A modified time domain subspace method for nonlinear identification based on nonlinear separation strategy. Nonlinear Dyn 94, 2491–2509 (2018). https://doi.org/10.1007/s11071-018-4505-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4505-6

Keywords

Navigation