Skip to main content
Log in

On group-invariant solutions of Konopelchenko–Dubrovsky equation by using Lie symmetry approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the present study, we have applied similarity transformation method via Lie symmetry approach on the Konopelchenko–Dubrovsky (KD) equation. We have generated infinite-dimensional Lie algebra and commutation relations of the KD equation. The KD equation reduced into a system of ordinary differential equations (ODEs) by employing similarity reductions. Ultimately, the exact solutions of such system of ODEs provided various families of new group-invariant solutions of the KD equation. Furthermore, we have discussed the dynamics of each solution such as multisoliton, doubly solitons, periodic multisoliton, multiple wavefront, solitons interactions, parabolic and stationary wave through their evolution profiles. Numerical simulations have been performed by taking appropriate choices of arbitrary functions and constants involved in the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Konopelcheno, B.G., Dubrovsky, V.G.: Some new integrable nonlinear evolution equations in (2 + 1)-dimensions. Phys. Lett. A 102, 15–17 (1984)

    Article  MathSciNet  Google Scholar 

  2. Lin, J., Lou, S.Y., Wang, K.L.: Multi-soliton solutions of the Konopelchenko–Dubrovsky equation. Chin. Phys. Lett. 18, 1173–1175 (2001)

    Article  Google Scholar 

  3. Wang, D., Zhang, H.Q.: Further improved F-expansion method and new exact solutions of Konopelchenko–Dubrovsky equation. Chaos Solitons Fractals 25, 601–610 (2005)

    Article  MathSciNet  Google Scholar 

  4. Zhang, S., Xia, T.C.: A generalized F-expansion method and new exact solutions of Konopelchenko–Dubrovsky equations. Appl. Math. Comput. 183, 1190–1200 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Wazwaz, A.M.: New kinks and solitons solutions to the (2 + 1)-dimensional Konopelchenko–Dubrovsky equation. Math. Comput. Model. 45, 473–479 (2007)

    Article  MathSciNet  Google Scholar 

  6. Song, L., Zhang, H.: New exact solutions for the Konopelchenko–Dubrovsky equation using an extended Riccati equation rational expansion method and symbolic computation. Appl. Math. Comput. 187, 1373–1388 (2007)

    MathSciNet  MATH  Google Scholar 

  7. He, T.L.: Bifurcation of travelling wave solutions of (2 + 1)-dimensional Konopelchenko–Dubrovsky equations. Appl. Math. Comput. 204, 773–783 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Hongyan, Z.: Lie point symmetry and some new soliton-like solutions of the Konopelchenko–Dubrovsky equations. Appl. Math. Comput. 203, 931–936 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Feng, W.G., Lin, C.: Explicit exact solutions for the (2 + 1)-dimensional Konopelchenko–Dubrovsky equation. Appl. Math. Comput. 210, 298–302 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Hongyan, Z.: Symmetry reductions of the Lax pair for the (2 + 1)-dimensional Konopelchenko–Dubrovsky equation. Appl. Math. Comput. 210, 530–535 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Zhang, S.: Exp-function method for Riccati equation and new exact solutions with two arbitrary functions of (2 + 1)-dimensional Konopelchenko–Dubrovsky equations. Appl. Math. Comput. 216, 1546–1552 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Ren, B., Cheng, X.P., Lin, J.: The (2 + 1)-dimensional Konopelchenko–Dubrovsky equation: nonlocal symmetries and interaction solutions. Nonlinear Dyn. 86, 1855–1862 (2016)

    Article  MathSciNet  Google Scholar 

  13. Kumar, M., Kumar, A., Kumar, R.: Similarity solutions of the Konopelchenko–Dubrovsky system using Lie group theory. Comput. Math. Appl. 71, 2051–2059 (2016)

    Article  MathSciNet  Google Scholar 

  14. Kumar, M., Kumar, R.: Soliton solutions of KD system using similarity transformations method. Comput. Math. Appl. 73, 701–712 (2017)

    Article  MathSciNet  Google Scholar 

  15. Bluman, G.W., Cole, J.D.: Similarity Methods for Differential Equations. Springer, New York (1974)

    Book  Google Scholar 

  16. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)

    Book  Google Scholar 

  17. Kumar, M., Kumar, R.: On some new exact solutions of incompressible steady state Navier–Stokes equations. Meccanica 49, 335–345 (2014)

    Article  MathSciNet  Google Scholar 

  18. Kumar, M., Kumar, R.: On new similarity solutions of the Boiti–Leon–Pempinelli system. Commun. Theor. Phys. 61, 121–126 (2014)

    Article  Google Scholar 

  19. Kumar, M., Kumar, R., Kumar, A.: Some more similarity solutions of the (2 + 1)-dimensional BLP system. Comput. Math. Appl. 70, 212–221 (2015)

    Article  MathSciNet  Google Scholar 

  20. Sahoo, S., Ray, S.S.: Lie symmetry analysis and exact solutions of (3 + 1) dimensional Yu–Toda–Sasa–Fukuyama equation in mathematical physics. Comput. Math. Appl. 73, 253–260 (2017)

    Article  MathSciNet  Google Scholar 

  21. Sahoo, S., Garai, G., Ray, S.S.: Lie symmetry analysis for similarity reduction and exact solutions of modified KdV-Zakharov–Kuznetsov equation. Nonlinear Dyn. 87, 1995–2000 (2017)

    Article  MathSciNet  Google Scholar 

  22. Johnpillai, A.G., Kara, A.H., Biswas, A.: Symmetry solutions and reductions of a class of generalized (2 + 1)-dimensional Zakharov–Kuznetsov equation. Int. J. Nonlinear Sci. Numer. Simul. 12, 45–50 (2011)

    Article  MathSciNet  Google Scholar 

  23. Kumar, S., Hama, A., Biswas, A.: Solutions of Konopelchenko–Dubrovsky equation by traveling wave hypothesis and Lie symmetry approach. Appl. Math. Inf. Sci. 8, 1533–1539 (2014)

    Article  MathSciNet  Google Scholar 

  24. Özer, T.: An application of symmetry groups to nonlocal continuum mechanics. Comput. Math. Appl. 55, 1923–1942 (2008)

    Article  MathSciNet  Google Scholar 

  25. Özer, T.: New exact solutions to the CDF equations. Chaos Solitons Fractals 39, 1371–1385 (2009)

    Article  MathSciNet  Google Scholar 

  26. Yaşar, Y., Özer, T.: Invariant solutions and conservation laws to nonconservative FP equation. Nonlinear Dyn. 59, 3203–3210 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Sekhar, T.R., Sharma, V.D.: Similarity analysis of modified shallow water equations and evolution of weak waves. Commun. Nonlinear Sci. Numer. Simul. 17, 630–636 (2012)

    Article  MathSciNet  Google Scholar 

  28. Bira, B., Sekhar, T.R., Zeidan, D.: Application of Lie groups to compressible model of two-phase flows. Comput. Math. Appl. 71, 46–56 (2016)

    Article  MathSciNet  Google Scholar 

  29. Kumar, R., Gupta, Y.K.: Some invariant solutions for non conformal perfect fluid plates in 5-flat form in general relativity. Pramana 74, 883–893 (2010)

    Article  Google Scholar 

  30. Kumar, M., Tiwari, A.K.: Soliton solutions of BLMP equation by Lie symmetry approach. Comput. Math. Appl. 75, 1434–1442 (2018)

    Article  MathSciNet  Google Scholar 

  31. Kumar, M., Tiwari, A.K.: Some group-invariant solutions of potential Kadomtsev–Petviashvili equation by using Lie symmetry approach. Nonlinear Dyn. 92, 781–792 (2018)

    Article  Google Scholar 

  32. Kumar, M., Tiwari, A.K., Kumar, R.: Some more solutions of Kadomtsev–Petviashvili equation. Comput. Math. Appl. 74, 2599–2607 (2017)

    Article  MathSciNet  Google Scholar 

  33. Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theory. Springer, Berlin (2009)

    Book  Google Scholar 

  34. Wazwaz, A.M.: Abundant solutions of various physical features for the (2 + 1)-dimensional modified KdV-Calogero–Bogoyavlenskii–Schiff equation. Nonlinear Dyn. 89, 1727–1732 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

One of the authors, Atul Kumar Tiwari, is grateful to CSIR-UGC, New Delhi, for the award of Senior Research Fellowship to writing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Tiwari, A.K. On group-invariant solutions of Konopelchenko–Dubrovsky equation by using Lie symmetry approach. Nonlinear Dyn 94, 475–487 (2018). https://doi.org/10.1007/s11071-018-4372-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4372-1

Keywords

Navigation