Skip to main content
Log in

Adaptive chaos control of the fractional-order arch MEMS resonator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses adaptive chaos control issue for the fractional-order arch MEMS resonator with fully unknown function, chaotic vibration and time delay under distributed electrostatic actuation. The phase diagrams and time histories are presented to investigate characteristic of chaotic attractor for the fractional-order arch MEMS resonator. In the process of controller design, the Chebyshev neural network with a weight and fractional-order adaptive law is employed to approximate complicated unknown function. In view of more advantages in modeling the behavior of the arch MEMS resonator in contrast to integer-order calculus, the fractional-order adaptive chaos control technology by merging Chebyshev neural network and backstepping is presented to guarantee the stability based on the fractional-order Lyapunov stability criterion. Finally, simulation studies are presented to illustrate feasibility of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tajaddodianfar, F., Pishkenari, H.N., Yazdi, M.R.H.: Prediction of chaos in electrostatically actuated arch micro-nano resonators: analytical approach. Commun. Nonlinear Sci. Numer. Simul. 30, 182–195 (2016)

    Article  MathSciNet  Google Scholar 

  2. Haghighi, H.S., Markazi, A.H.D.: Chaos prediction and control in MEMS resonators. Commun. Nonlinear Sci. Numer. Simul. 15, 3091–3099 (2010)

    Article  Google Scholar 

  3. Ghanbari, A., Moghanni-Bavil-Olyaei, M.: Adaptive fuzzy terminal sliding-mode control of MEMS z-axis gyroscope with extended Kalman filter observer. Syst. Sci. Control Eng. 2, 183–191 (2014)

    Article  Google Scholar 

  4. Perez-Molina, M., Pérez-Polo, M.F.: Fold-Hopf bifurcation, steady state, self-oscillating and chaotic behavior in an electromechanical transducer with nonlinear control. Commun. Nonlinear Sci. Numer. Simul. 17, 5172–5188 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boroujeni, E.A., Momeni, H.R.: Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems. Signal Process. 92, 2365–2370 (2012)

    Article  Google Scholar 

  7. Liu, H., Li, S., Wang, H., Huo, Y., Luo, J.: Adaptive synchronization for a class of uncertain fractional-order neural networks. Entropy 17, 7185–7200 (2015)

    Article  MathSciNet  Google Scholar 

  8. Ding, D., Qi, D., Peng, J., Wang, Q.: Asymptotic pseudo-state stabilization of commensurate fractional-order nonlinear systems with additive disturbance. Nonlinear Dyn. 81, 1–11 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hamamci, S.E.: An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers. IEEE Trans. Autom. Control 52, 1964–1969 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, Z.: A graphic stability criterion for non-commensurate fractional-order time-delay systems. Nonlinear Dyn. 78, 2101–2111 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mayoof, F.N., Hawwa, M.A.: Chaotic behavior of a curved carbon nanotube under harmonic excitation. Chaos Solitons Fractals 42, 1860–1867 (2009)

    Article  Google Scholar 

  12. Younis, M.I., Ouakad, H.M., Alsaleem, F.M., Miles, R., Cui, W.: Nonlinear dynamics of MEMS arches under harmonic electrostatic actuation. J. Microelectromech. Syst. 19, 647–656 (2010)

    Article  Google Scholar 

  13. Nayfeh, A., Ouakad, H., Najar, F., Choura, S., Abdel-Rahman, E.: Nonlinear dynamics of a resonant gas sensor. Nonlinear Dyn. 59, 607–618 (2010)

    Article  MATH  Google Scholar 

  14. Miandoab, E.M., Pishkenari, H.N., Yousefi-Koma, A., Tajaddodianfar, F.: Chaos prediction in MEMS-NEMS resonators. Int. J. Eng. Sci. 82, 74–83 (2014)

    Article  Google Scholar 

  15. Tajaddodianfar, F., Pishkenari, H.N., Yazdi, M.R.H., Miandoab, E.M.: Size-dependent bistability of an electrostatically actuated arch NEMS based on strain gradient theory. J. Phys. D Appl. Phys. 48, 245503 (2015)

    Article  Google Scholar 

  16. Tajaddodianfar, F., Hairi Yazdi, M.R., Pishkenari, H.N.: On the chaotic vibrations of electrostatically actuated arch micro/nano resonators: a parametric study. Int. J. Bifurc. Chaos 25, 10–11 (2015)

    Article  MATH  Google Scholar 

  17. Luo, S., Song, Y.D.: Chaos analysis based adaptive backstepping control of the micro-electro-mechanical resonators with constrained output and uncertain time delay. IEEE Trans. Ind. Electron. 63, 6217–6225 (2016)

    Article  Google Scholar 

  18. Fei, J., Zhou, J.: Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42, 1599–1607 (2012)

    Article  Google Scholar 

  19. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pereira, M.D.F.V., Balthazar, J.M., Santos, D.A.D., Tusset, A.M., Castro, D.F.D., Prado, I.A.A.: A note on polynomial chaos expansions for designing a linear feedback control for nonlinear systems. Nonlinear Dyn. 87, 1–14 (2016)

  22. Zhu, H., Zhou, S., Zhang, J.: Chaos and synchronization of the fractional-order Chua’s system. Chaos Solitons Fractals 26, 1595–1603 (2016)

    MATH  Google Scholar 

  23. Lin, T.C., Lee, T.Y.: Chaos synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive fuzzy sliding mode control. IEEE Trans. Fuzzy Syst. 19, 623–635 (2011)

    Article  Google Scholar 

  24. Tusset, A.M., Balthazar, J.M., Bassinello, D.G., Jr, B.R.P., Felix, J.L.P.: Statements on chaos control designs, including a fractional order dynamical system, applied to a “MEMS” comb-drive actuator. Nonlinear Dyn. 69, 1837–1857 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Aghababa, M.P.: Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dyn. 69, 247–261 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zou, A.M., Kumar, K.D.: Neural network-based adaptive output feedback formation control for multi-agent systems. Nonlinear Dyn. 70, 1283–1296 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sabatier, J., Agrawal, O.P., Machado, J.T.: Advances in Fractional Calculus. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  28. Luo, S., Wu, S., Gao, R.: Chaos control of the brushless direct current motor using adaptive dynamic surface control based on neural network with the minimum weights. Chaos 25, 073102 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is funded by the National Natural Science Foundation of China (Nos. 51505170, 51475097, 51375506), National Smart Manufacturing Project (No. [2016]213), National Science-technology Support Plan Project (No. 2012BAF12B14) and Major Project of Basic Research of Guizhou Province (No. [2014]2001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohua Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Li, S. & Tajaddodianfar, F. Adaptive chaos control of the fractional-order arch MEMS resonator. Nonlinear Dyn 91, 539–547 (2018). https://doi.org/10.1007/s11071-017-3890-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3890-6

Keywords

Navigation