Skip to main content
Log in

Global dynamics of a stochastic avian–human influenza epidemic model with logistic growth for avian population

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a stochastic avian–human influenza epidemic model with logistic growth for avian population is investigated. This model describes the transmission of avian influenza among avian population and human population in random environments. The dynamical behavior of this model is discussed. Firstly, the existence and uniqueness of the global positive solution are obtained. Then persistence in the mean and extinction of the infected avian population is studied. Furthermore, sufficient conditions for the existence of an ergodic stationary distribution of stochastic avian–human influenza model are obtained. We find a threshold of this stochastic model which determines the outcome of the disease in case the white noises are small. Results show that environmental white noise is helpful for disease control. Finally, numerical simulations validate the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention (CDC), Avian Influenza. https://www.cdc.gov/flu/avianflu/influenza-a-virus-subtypes.htm

  2. Centers for Disease Control and Prevention (CDC), Avian Influenza. https://www.cdc.gov/flu/avianflu/h5n1-virus.htm

  3. Pantin-Jackwood, M.J., Miller, P.J., Spackman, E., Swayne, D.E., Susta, L., Costa-Hurtado, M., Suarez, D.L.: Role of poultry in the spread of novel h7n9 influenza virus in China. J. Virol. 88, 5381–5390 (2014)

    Article  Google Scholar 

  4. Li, Q., Zhou, L., Zhou, M., Chen, Z., Li, F., et al.: Epidemiology of human infections with avian influenza a (H7N9) virus in China. New Eng. J. Med. 370, 520–532 (2014)

    Article  Google Scholar 

  5. Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  6. Liu, S., Ruan, S., Zhang, X.: Nonlinear dynamics of avian influenza epidemic models. Math. Biosci. 283, 118–135 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  7. Iwami, S., Takeuchi, Y., Liu, X.: Avian–human influenza epidemic model. Math. Biosci. 207, 1–25 (2007)

  8. Lucchetti, J., Roy, M., Martcheva, M.: An avian influenza model and its fit to human avian influenza cases. In: Tchuenche, J.M., Mukandavire, Z. (eds.) Advances in Disease Epidemiology, pp. 1–30. Nova Science Publishers, New York (2009)

    Google Scholar 

  9. Gumel, A.B.: Global dynamics of a two-strain avian influenza model. Int. J. Comput. Math. 86, 85–108 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ma, X., Wang, W.: A discrete model of avian influenza with seasonal reproduction and transmission. J. Biol. Dyn. 4, 296–314 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cai, Y., Kang, Y., Banerjee, M., Wang, W.: A stochastic epidemic model incorporating media coverage. Commun. Math. Sci. 14, 893–910 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lahrouz, A., Omari, L.: Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence. Stat. Probab. Lett. 83, 960–968 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Zhang, X., Jiang, D., Alsaedi, A., Hayat, T.: Stationary distribution of stochastic SIS epidemic model with vaccination under regime switching. Appl. Math. Lett. 59, 87–93 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  14. Zhang, X., Jiang, D., Hayat, T., Alsaedi, A.: Periodic solution and stationary distribution of stochastic S-DI-A epidemic models. Appl. Anal. (2016). doi:10.1080/00036811.2016.1257123

  15. Zhang, X., Wang, K.: Asymptotic behavior of non-autonomous stochastic Gilpin–Ayala competition model with jumps. Appl. Anal. 94, 2588–2604 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liu, M., Wang, K.: Dynamics of a two-prey one-predator system in random environments. J. Nonlinear Sci. 23, 751–775 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ji, C., Jiang, D.: Dynamics of a stochastic density dependent predator-prey system with Beddington–DeAngelis functional response. J. Math. Anal. Appl. 381, 441–453 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lipster, R.: A strong law of large numbers for local martingales. Stochastics 3, 217–228 (1980)

    Article  MathSciNet  Google Scholar 

  19. Yang, Q., Jiang, D., Shi, N., Ji, C.: The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence. J. Math. Anal. Appl. 388, 248–271 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Has’minskii, R.: Stochastic Stability of Differential equations. Sijthoff & Noordhoff, Alphen aan den Rijn (1980)

    Book  Google Scholar 

  21. Zhu, C., Yin, G.: Asymptotic properties of hybird diffusion systems. SIAM J. Control Optim. 46, 1155–1179 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gard, T.C.: Introduction to Stochastic Differential Equation. Marcel Dekker, New York (1988)

    MATH  Google Scholar 

  24. Strang, G.: Linear Algebra and Its Applications, 3rd edn. Harcourt Brace, Watkins (1988)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province, China (No. ZR2014AL008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhong Zhang.

Appendix

Appendix

We introduce some results concerning the stationary distribution. For more details see [20].

Let X(t) be a homogeneous Markov process in \(E^l\) (\(E^l\) denotes euclidean l-space) satisfying the stochastic equation

$$\begin{aligned} \mathrm{d} X(t)=h(X) \mathrm{d} t+\sum _{m=1}^{k}g_\mathrm{m}(X) \mathrm{d} B_\mathrm{m}(t). \end{aligned}$$

The diffusion matrix is

$$\begin{aligned} \bar{A}(x)=(\bar{a}_{ij}(x)), \quad \bar{a}_{ij}(x)=\sum _{m=1}^{k}g_\mathrm{m}^{(i)}(x)g_\mathrm{m}^{(j)}(x). \end{aligned}$$

Assumption 1

There is a bounded domain \(U\subset E^l\) with regular boundary \(\Gamma \), which has the properties that

  1. (B1)

    In the domain U and some neighborhood thereof, the smallest eigenvalue of the diffusion matrix \(\bar{A}(x)\) is bounded away from zero.

  2. (B2)

    If \(x\in E^l{\setminus } U\), the mean time \(\tau \) at which a path issuing from x reaches the set U is finite, and \(\sup _{x\in \mathbb {K}}\mathbb {E}_x\tau <+\infty \) for every compact subset \(\mathbb {K}\in E^l\).

Lemma 4

(See [18]) If Assumption 1 holds, then the Markov process X(t) has a stationary distribution \(\mu (\cdot )\). Let \(f(\cdot )\) be a function integrable with respect to the measure \(\mu \). Then

$$\begin{aligned} \mathbb {P}\left\{ \lim _{t\rightarrow \infty }\frac{1}{t}\int _{0}^{t}f(X(s)) \mathrm{d} s=\int _{E^l}f(x)\mu ( \mathrm{d} x)\right\} =1. \end{aligned}$$

In order to verify (B1), we only need to show that F is uniformly elliptical in U, where \(F(u)=h(x)u_x+0.5\,\text {trace}(\bar{A}(x)u_{xx})\), that is to say, there is \(M>0\) such that

$$\begin{aligned} \sum _{i,j=1}^{k}\bar{a}_{ij}(x)\xi _i\xi _{j}>M|\xi |^2,\quad x\in U,\quad \xi \in \mathbb {R}^k. \end{aligned}$$
(19)

(see Chapter 3 of [23] and Rayleigh’s principle in [24]). To verify (B2), it suffices to prove that there exist a neighborhood U and a nonnegative \(C^2\)-function such that for any \(x \in E^l{\setminus } U, \mathcal {L}V\) is negative (see [21]).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X. Global dynamics of a stochastic avian–human influenza epidemic model with logistic growth for avian population. Nonlinear Dyn 90, 2331–2343 (2017). https://doi.org/10.1007/s11071-017-3806-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3806-5

Keywords

Navigation