Skip to main content
Log in

Finite-time projective synchronization of memristor-based delay fractional-order neural networks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper mainly investigates the finite-time projective synchronization problem of memristor-based delay fractional-order neural networks (MDFNNs). By using the definition of finite-time projective synchronization, combined with the memristor model, set-valued map and differential inclusion theory, Gronwall–Bellman integral inequality and Volterra-integral equation, the finite-time projective of MDFNNs is achieved via the linear feedback controller. Novel sufficient conditions are obtained to guarantee the finite-time projective synchronization of the drive-response MDFNNs. Besides, we also analyze the feasible region of the settling time. Finally, two numerical examples are given to show the effectiveness of the proposed results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  2. Bagley, R.L., Torvik, P.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27(3), 201–210 (1983)

    Article  MATH  Google Scholar 

  3. Bao, H., Park, J.H., Cao, J.: Adaptive synchronization of fractional-order memristor-based neural networks with time delay. Nonlinear Dyn. 82(3), 1343–1354 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao, H.B., Cao, J.D.: Projective synchronization of fractional-order memristor-based neural networks. Neural Netw. 63, 1–9 (2015)

    Article  MATH  Google Scholar 

  5. Bellman, R., et al.: The stability of solutions of linear differential equations. Duke Math. J. 10(4), 643–647 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhalekar, S., Daftardar-Gejji, V.: A predictor–corrector scheme for solving nonlinear delay differential equations of fractional order. J. Fract. Calc. Appl. 1(5), 1–9 (2011)

    MATH  Google Scholar 

  7. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D., Zhou, C.: The synchronization of chaotic systems. Phys. Rep. 366(1), 1–101 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caponetto, R., Dongola, G., Fortuna, L., Petráš, I.: Fractional Order Systems: Modeling and Control Applications. World Scientific Series on Nonlinear Science. World Scientific, Singapore (2010)

    Book  Google Scholar 

  10. Carbajal, J.P., Dambre, J., Hermans, M., Schrauwen, B.: Memristor models for machine learning. Neural Comput. 27(3), 725 (2015)

    Article  Google Scholar 

  11. Chee, C., Xu, D.: Chaos-based m-ary digital communication technique using controlled projective synchronisation. IEE Proc. Circuits Devices Syst. 153(4), 357–360 (2006)

    Article  Google Scholar 

  12. Chen, J., Zeng, Z., Jiang, P.: Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw. 51, 1–8 (2014)

    Article  MATH  Google Scholar 

  13. Choi, S., Sheridan, P., Lu, W.D.: Data clustering using memristor networks. Sci. Rep. 5, 10492 (2015)

    Article  Google Scholar 

  14. Cui, X., Yu, Y., Wang, H., Hu, W.: Dynamical analysis of memristor-based fractional-order neural networks with time delay. Mod. Phys. Lett. B 30(18), 1650271 (2016)

    Article  MathSciNet  Google Scholar 

  15. Dadras, S., Momeni, H.R., Qi, G., Wang, Z.L.: Four-wing hyperchaotic attractor generated from a new 4d system with one equilibrium and its fractional-order form. Nonlinear Dyn. 67(2), 1161–1173 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Diethelm, K., Freed, A.D.: The fracpece subroutine for the numerical solution of differential equations of fractional order. Forschung und wissenschaftliches Rechnen 1999, 57–71 (1998)

    Google Scholar 

  17. Duan, S., Zhang, Y., Hu, X., Wang, L., Li, C.: Memristor-based chaotic neural networks for associative memory. Neural Comput. Appl. 25(6), 1437–1445 (2014)

    Article  Google Scholar 

  18. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides: Control Systems, vol. 18. Springer, Berlin (2013)

    Google Scholar 

  19. Ghamisi, P., Couceiro, M.S., Benediktsson, J.A., Ferreira, N.M.: An efficient method for segmentation of images based on fractional calculus and natural selection. Expert Syst. Appl. 39(16), 12407–12417 (2012)

    Article  Google Scholar 

  20. Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91(3), 034101 (2003)

    Article  Google Scholar 

  21. Gupta, I., Serb, A., Khiat, A., Zeitler, R., Vassanelli, S., Prodromakis, T.: Real-time encoding and compression of neuronal spikes by metal-oxide memristors. Nat. Commun. 7, 12805 (2016)

    Article  Google Scholar 

  22. Hernández-Mejía, C., Sarmiento-Reyes, A., Vázquez-Leal, H.: A novel modeling methodology for memristive systems using homotopy perturbation methods. Circuits Syst. Signal Process. 36(3), 1–22 (2016)

    MATH  Google Scholar 

  23. Hu, X., Duan, S., Chen, G., Chen, L.: Modeling affections with memristor-based associative memory neural networks. Neurocomputing 223(5), 129–137 (2016)

    Google Scholar 

  24. Kamenkov, G.: On stability of motion over a finite interval of time. J. Appl. Math. Mech. 17(2), 529–540 (1953)

    MathSciNet  Google Scholar 

  25. Koh, C.G., Kelly, J.M.: Application of fractional derivatives to seismic analysis of base-isolated models. Earthq. Eng. Struct. Dyn. 19(2), 229–241 (1990)

    Article  Google Scholar 

  26. Lenzi, E., dos Santos, M., Lenzi, M., Vieira, D., da Silva, L.: Solutions for a fractional diffusion equation: anomalous diffusion and adsorption–desorption processes. J. King Saud Univ. Sci. 28(1), 3–6 (2016)

    Article  Google Scholar 

  27. Leon, C.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  28. Ma, J., Wu, F., Ren, G., Tang, J.: A class of initials-dependent dynamical systems. Appl. Math. Comput. 298, 65–76 (2017)

    MathSciNet  Google Scholar 

  29. Machado, J.T.: Analysis and design of fractional-order digital control systems. Syst. Anal. Model. Simul. 27(2–3), 107–122 (1997)

    MATH  Google Scholar 

  30. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59(5), 1586–1593 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82(15), 3042 (1999)

    Article  Google Scholar 

  32. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mobayen, S.: Finite-time tracking control of chained-form nonholonomic systems with external disturbances based on recursive terminal sliding mode method. Nonlinear Dyn. 80(1–2), 669–683 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Naous, R., Al-Shedivat, M., Salama, K.N.: Stochasticity modeling in memristors. IEEE Trans. Nanotechnol. 15(1), 15–28 (2016)

    Article  Google Scholar 

  35. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pecora, L.M., Carroll, T.L.: Synchronization of chaotic systems. Chaos Interdiscip. J. Nonlinear Sci. 25(9), 097611 (2015)

    Article  MATH  Google Scholar 

  37. Pershin, Y.V., Di Ventra, M.: Solving mazes with memristors: a massively parallel approach. Phys. Rev. E 84(4), 046703 (2011)

    Article  Google Scholar 

  38. Pershin, Y.V., La Fontaine, S., Di Ventra, M.: Memristive model of amoeba learning. Phys. Rev. E 80(2), 021926 (2009)

    Article  Google Scholar 

  39. Petráš, I.: Fractional-order nonlinear controllers: design and implementation notes. In: Proceedings of the IEEE ICCC2016, High Tatras, Slovak Republic (2016)

  40. Podlubny, I.: Fractional Differential Equations, vol. 198. Academic press, New York (1998)

    MATH  Google Scholar 

  41. Rakkiyappan, R., Velmurugan, G., Cao, J.: Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays. Nonlinear Dyn. 78(4), 2823–2836 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sapora, A., Cornetti, P., Carpinteri, A., Baglieri, O., Santagata, E.: The use of fractional calculus to model the experimental creep-recovery behavior of modified bituminous binders. Mater. Struct. 49(1–2), 45–55 (2016)

    Article  Google Scholar 

  43. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  44. Velmurugan, G., Rakkiyappan, R.: Hybrid projective synchronization of fractional-order memristor-based neural networks with time delays. Nonlinear Dyn. 83(1–2), 419–432 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, B., Ding, J., Wu, F., Zhu, D.: Robust finite-time control of fractional-order nonlinear systems via frequency distributed model. Nonlinear Dyn. 85(4), 2133–2142 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, F., Yang, Y., Hu, M., Xu, X.: Projective cluster synchronization of fractional-order coupled-delay complex network via adaptive pinning control. Phys. A Stat. Mech. Appl. 434, 134–143 (2015)

    Article  MathSciNet  Google Scholar 

  47. Wang, F.Z., Helian, N., Wu, S., Yang, X., Guo, Y., Lim, G., Rashid, M.M.: Delayed switching applied to memristor neural networks. J. Appl. Phys. 111(7), 07E317 (2012)

    Article  Google Scholar 

  48. Wang, L., Shen, Y., Yin, Q., Zhang, G.: Adaptive synchronization of memristor-based neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 26(9), 2033–2042 (2015)

    Article  MathSciNet  Google Scholar 

  49. Wang, S., Yu, Y., Wen, G.: Hybrid projective synchronization of time-delayed fractional order chaotic systems. Nonlinear Anal. Hybrid Syst. 11, 129–138 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wu, A., Zeng, Z.: Dynamic behaviors of memristor-based recurrent neural networks with time-varying delays. Neural Netw. 36, 1–10 (2012)

    Article  MATH  Google Scholar 

  51. Wu, G.C., Baleanu, D., Xie, H.P., Chen, F.L.: Chaos synchronization of fractional chaotic maps based on the stability condition. Phys. A Stat. Mech. Appl. 460, 374–383 (2016)

    Article  MathSciNet  Google Scholar 

  52. Wu, X., Lu, Y.: Generalized projective synchronization of the fractional-order chen hyperchaotic system. Nonlinear Dyn. 57(1), 25–35 (2009)

    Article  MATH  Google Scholar 

  53. Xiao, J., Zhong, S., Li, Y., Xu, F.: Finite-time Mittag-Leffler synchronization of fractional-order memristive BAM neural networks with time delays. Neurocomputing 219, 431–439 (2017)

    Article  Google Scholar 

  54. Xu, J., Wang, D., Dang, C.: A marginal fractional moments based strategy for points selection in seismic response analysis of nonlinear structures with uncertain parameters. J. Sound Vib. 387, 226–238 (2017)

    Article  Google Scholar 

  55. Yu, J., Hu, C., Jiang, H., Fan, X.: Projective synchronization for fractional neural networks. Neural Netw. 49, 87–95 (2014)

    Article  MATH  Google Scholar 

  56. Zha, J., Huang, H., Liu, Y.: A novel window function for memristor model with application in programming analog circuits. IEEE Trans. Circuits Syst. II Express Briefs 63(5), 423–427 (2016)

    Article  Google Scholar 

  57. Zhang, Y., Wang, X., Li, Y., Friedman, E.G.: Memristive model for synaptic circuits. IEEE Trans. Circuits Syst. II Express Briefs (2016). doi:10.1109/TCSII.2016.2605069

  58. Zheng, M., Li, L., Peng, H., Xiao, J., Yang, Y., Zhao, H.: Finite-time stability and synchronization for memristor-based fractional-order Cohen–Grossberg neural network. Eur. Phys. J. B 89(9), 204 (2016)

    Article  MathSciNet  Google Scholar 

  59. Zhou, P., Ding, R., Cao, Y.X.: Multi drive-one response synchronization for fractional-order chaotic systems. Nonlinear Dyn. 70(2), 1263–1271 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Key Research and Development Program (Grant No.2016YFB0800602), the National Natural Science Foundation of China (Grant Nos.61472045, 61573067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, M., Li, L., Peng, H. et al. Finite-time projective synchronization of memristor-based delay fractional-order neural networks. Nonlinear Dyn 89, 2641–2655 (2017). https://doi.org/10.1007/s11071-017-3613-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3613-z

Keywords

Navigation