Skip to main content
Log in

Multiple resonance and anti-resonance in coupled Duffing oscillators

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate the resonance behaviour in a system composed by n coupled Duffing oscillators where only the first oscillator is driven by a periodic force, assuming a nearest neighbour coupling. We have derived the frequency-response equations for a system composed of two coupled oscillators by using a theoretical approach. Interestingly, the frequency-response curve displays two resonance peaks and one anti-resonance. A theoretical prediction of the response amplitudes of two oscillators closely matches with the numerically computed amplitudes. We analyse the effect of the coupling strength on the resonance and anti-resonance frequencies and the response amplitudes at these frequencies. For the n coupled oscillators’ system, in general, there are n-resonant peaks and (\(n-1\)) anti-resonant peaks. For large values of n, except for the first resonance, other resonant peaks are weak due to linear damping. The resonance behaviours observed in the n coupled Duffing oscillators are also realized in an electronic analog circuit simulation of the equations. Understanding the role of coupling and system size has the potential applications in music, structural engineering, power systems, biological networks, electrical and electronic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Belbasi, S., Foulaadvand, M.E., Joe, Y.S.: Anti-resonance in a one-dimensional chain of driven coupled oscillators. Am. J. Phys. 82, 32–38 (2014)

    Article  Google Scholar 

  2. Wang, Y., Chik, T.W., Wand, Z.D.: Coherence resonance and noise induced synchronization in globally coupled Hodgkin–Huxley neurons. Phys. Rev. E 61, 740 (2000)

    Article  Google Scholar 

  3. Kenfack, A., Singh, K.P.: Stochastic resonance in coupled overdamped bistable system. Phys. Rev. E 82, 046224 (2010)

    Article  Google Scholar 

  4. Wu, H., Jiang, H., Hou, Z.: Array enhanced logical stochastic resonance in coupled bistable systems. Chin. J. Chem. Phys. 25, 70 (2012)

    Article  Google Scholar 

  5. Pikovsky, A., Zaikin, A., dela Casa, M.A.: System size resonance in coupled noisy systems and in the Ising model. Phys. Rev. Lett. 88, 050601 (2002)

    Article  Google Scholar 

  6. Toral, R., Mirass, C.R., Gunton, J.D.: System size coherence resonance in coupled FitzHugh–Nagumo models. EuroPhys. Lett. 61, 162 (2003)

    Article  Google Scholar 

  7. Yu, H., Wany, Y., Liu, C., Deng, B., Wei, X.: Vibrational resonance in excitable neuronal systems. Chaos 21, 043101 (2011)

    Article  Google Scholar 

  8. Rajamani, S., Rajasekar, S., Sanjuán, M.A.F.: Ghost vibrational resonance. Commun. Nonlinear Sci. Numer. Simul. 19, 4003–4012 (2014)

    Article  MathSciNet  Google Scholar 

  9. Lovera, A., Gallinet, B., Nordlander, P., Martin, O.J.F.: Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 7(5), 4527–4536 (2013)

    Article  Google Scholar 

  10. Bitar, D., Kacem, N., Bouhaddi, N., Collet, M.: Collective dynamics of periodic nonlinear oscillators under simultaneous parametric and external excitations. Nonlinear Dyn. (2015). doi:10.1007/s11071-015-2194-y

    MathSciNet  Google Scholar 

  11. Agur, Z.: Resonance and anti-resonance in the design of chemotherapeutic protocols. J. Theor. Med. 1(3), 237–245 (1998)

    Article  MATH  Google Scholar 

  12. D’ambrogio, W., Fregolent, A.: The use of antiresonances for robust model updating. J. Sound Vib. 236(2), 227–243 (2000)

    Article  Google Scholar 

  13. Jones, K., Turcotte, J.: Finite element model updating using antiresonant frequencies. J. Sound Vib. 252(4), 717–727 (2002)

    Article  Google Scholar 

  14. Hanson, D., Waters, T.P., Thompson, D.J., Randall, R.B., Ford, R.A.J.: The role of anti-resonance frequencies from operational modal analysis in finite element model updating. Mech. Syst. Signal Process. 21(1), 74–97 (2007)

    Article  Google Scholar 

  15. Mottershead, J.E.: On the zeros of the structural frequency response functions and their sensitivities. Mech. Syst. Signal Process. 12(5), 591–597 (1998)

    Article  Google Scholar 

  16. Lysyansky, B., Popovych, O.V., Tass, P.A.: Desynchronizing anti-resonance effect of \(m{:}n\) ON–OFF coordinated reset simulation. J. Neural Eng. 8, 036019 (2011)

    Article  Google Scholar 

  17. Uchino, K.: Piezoelectric ultrasonic motors: overview. Smart Mater. Struct. 7, 273–285 (1998)

    Article  Google Scholar 

  18. Jeong, W.B., Yoo, W.S., Kim, J.Y.: Sensitivity analysis of anti-resonance frequency for vibration test control of a fixture. KSME Int. J. 17(11), 1732–1738 (2003)

    Google Scholar 

  19. Yao, G.C., Lien, N.C.: Soil–structure interaction effect on anti-resonance frequency. J. Chin. Inst. Eng. 24(1), 45–54 (2001)

    Article  Google Scholar 

  20. Wahl, F., Schmidt, G., Forrai, L.: On the significance of antiresonance frequencies in experimental structural analysis. J. Sound Vib. 219(3), 379–394 (1999)

    Article  Google Scholar 

  21. Rice, P.R., Brecha, R.J.: Cavity induced transparency. Opt. Commun. 126(4–6), 230–235 (1996)

    Article  Google Scholar 

  22. Sames, C., Chibani, H., Hamsen, C., Altin, P.A., Wilk, T., Rempe, G.: Antiresonance phase shift in strongly coupled cavity QED. Phys. Rev. Lett. 112, 043601 (2014)

    Article  Google Scholar 

  23. Blondeau, F.C.: Input–output gains for signal in noise in stochastic resonance. Phys. Lett. A 232, 41–48 (1997)

    Article  Google Scholar 

  24. Borkowski, L.S.: Multimodal transition and stochastic antiresonance in squid giant axons. Phys. Rev. E 82, 041909 (2010)

    Article  Google Scholar 

  25. Ghikas, D.P.K., Tzemos, A.: Stochastic anti-resonance in the time evolution of interacting qubits. Int. J. Quant. Inf. 10(2), 1250023 (2012)

    Article  Google Scholar 

  26. Auudov, N.V., Krichigin, A.V.: Stochastic resonance and anti-resonance in monostable systems. Quant. Electr. 51, 812 (2008)

    Google Scholar 

  27. Ji, L., Wei, X., Jin, Q., Yu, M.: Noise induced anticoherence resonance in a delayed circadian rhythm system. In: Proceedings of international workshop on Chaos Fractal theories and applications, IEEE Computer Society, p. 103 (2009)

  28. Gao, Y., Wang, J.: Doubly stochastic coherence in a complex neuronal networks. Phys. Rev. E 86, 051914 (2012)

    Article  Google Scholar 

  29. Chakraborty, S., Sarkar, A.: Parametrically excited non-linearity in Van der Pol oscillator: resonance, anti-resonance and switch. Phys. D 254, 24–28 (2014)

  30. Gluckman, B.J., Netoff, T.I., Neel, E.J., Ditto, W.L., Spano, M.L., Schiff, S.J.: Stochastic resonance in a neuronal network from mammalian brain. Phy. Rev. Lett. 77(19), 4098–4101 (1996)

    Article  Google Scholar 

  31. Ozer, M., Perc, M., Uzuntarla, M.: Stochastic resonance on Newman–Watts networks of Hodgkin–Huxley neurons with local periodic driving. Phys. Lett. A 373, 964–968 (2009)

    Article  MATH  Google Scholar 

  32. Yao, C., Zhan, M.: Signal transmission by vibrational resonance in one-way coupled bistable systems. Phy. Rev. E 81, 061129 (2010)

    Article  Google Scholar 

  33. Jothimurugan, R., Thamilmaran, K., Rajasekar, S., Sanjuan, M.A.F.: Experimental evidence for vibrational resonance and enhanced signal transmission in Chua’s circuit. Int. J. Bifurc. Chaos 23(11), 1350189 (2013)

    Article  Google Scholar 

  34. Rajamani, S., Rajasekar, S.: Signal amplification by unidirectional coupling of oscillators. Phys. Scr. 88, 015010 (2013)

    Article  Google Scholar 

  35. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran 77: Art of Scientific Computing. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  36. Tondl, A., Půst, L.: To the parametric anti-resonance application. Eng. Mech. 17(2), 135–144 (2010)

    Google Scholar 

  37. Zhu, P., Mei, D.C.: Anti-coherence and coherence resonance induced by nonlinear time delay in autonomous stochastic system. Eur. Phys. J. B 87, 109 (2014)

    Article  Google Scholar 

  38. FitzHugh, R.: Impulses and physiological studies in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

Download references

Acknowledgments

The work of R.J. is supported by the University Grants Commission, Government of India in the form of Research Fellowship in Science for Meritorious Students. The work of K.T. forms a part of a Department of Science and Technology, Government of India sponsored project Grant No. SR/S2/HEP-015/2010. M.A.F.S. acknowledges the financial support by the Spanish Ministry of Economy and Competitivity under Project Number FIS2013-40653-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajasekar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jothimurugan, R., Thamilmaran, K., Rajasekar, S. et al. Multiple resonance and anti-resonance in coupled Duffing oscillators. Nonlinear Dyn 83, 1803–1814 (2016). https://doi.org/10.1007/s11071-015-2447-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2447-9

Keywords

Navigation