Skip to main content
Log in

Model-free nonlinear restoring force identification for SMA dampers with double Chebyshev polynomials: approach and validation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The initiation and propagation of damage such as cracks in an engineering structure under dynamic loadings is a nonlinear process. Strictly speaking, conventional eigenvalue and eigenvector extraction-based damage identification approaches are suitable for linear systems only. Due to the unique nonlinearities associated with each civil engineering structure, it would be inefficient to attempt to express the nonlinear restoring force (NRF) of an engineering structure such as a reinforced concrete structure in a parametric form. Consequently, it is highly desirable to develop a general nonlinear identification approach to achieve structural damage detection in both qualitative and quantitative ways without the assumption on the parametric model of the hysteretic behavior. In this paper, based on a double Chebyshev polynomial function, a time-domain identification approach is proposed for identifying both the structural NRF and the mass distribution for multi-degree-of-freedom (MDOF) structures under incomplete dynamic loadings. As a typical nonlinear material, shape memory alloy (SMA) is introduced to a MDOF structural model to mimic the nonlinear behavior under dynamic loadings. The feasibility and robustness of the proposed approach is validated via (1) a numerical MDOF structure model equipped with a SMA damper whose restoring force is described by a double-flag-shaped nonlinear model, and (2) an experimental study on a four-story shear building structure model equipped with an in-house design of a SMA damper used to mimic the structural NRF under incomplete impact loadings. The identified NRF is compared with the theoretical values and the measurements in experiment. Both numerical and experimental results show that the proposed approach is capable of identifying both the mass distribution and structural nonlinearity under dynamic loadings, and could be potentially used for damage initiation and propagation monitoring during vibration of engineering structures under dynamic excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ghanem, R., Shinozuka, M.: Structural-system identification I: theory. J. Eng. Mech. 121(2), 255–264 (1995)

    Article  Google Scholar 

  2. Doebling, S.W., Farrar, C.R., Prime, M.B., Shevitz, D.W.: A review of damage identification methods that examine changes in dynamic properties. Shock Vib. Dig. 30(2), 91–105 (1998)

    Article  Google Scholar 

  3. Wu, Z.S., Xu, B., Harada, T.: Review on structural health monitoring for infrastructure. J. Appl. Mech. 6, 1043–1054 (2003)

    Article  Google Scholar 

  4. Ibanez, P.: Identification of dynamic parameters of linear and non-linear structural models from experimental data. Nucl. Eng. Des. 25, 30–41 (1973)

    Article  Google Scholar 

  5. Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.C.: Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20, 505–592 (2006)

    Article  Google Scholar 

  6. Worden, K., Tomlinson, G.R.: Nonlinearity in Structural Dynamics: Detection, Identification and Modeling. IOP Publishing, Bristol (2001)

    Book  Google Scholar 

  7. Masri, S.F., Caughey, T.K.: A nonparametric identification technique for nonlinear dynamic problems. J. Appl. Mech. 46, 433–447 (1979)

    Article  MATH  Google Scholar 

  8. Masri, S.F., Sassi, H., Caughey, T.K.: A nonparametric identification of nearly arbitrary nonlinear systems. J. Appl. Mech. 49, 619–628 (1982)

    Article  MATH  Google Scholar 

  9. Yang, Y.X., Ibrahim, S.R.: A nonparametric identification technique for a variety of discrete nonlinear vibrating system. J. Vib. Acoust. Stress Reliab. Des. 107, 60–66 (1985)

    Article  Google Scholar 

  10. Masri, S.F., Miller, R.K., Saud, A.F., Caughey, T.K.: Identification of nonlinear vibrating structures; part I: formulation. J. Appl. Mech. 109, 918–922 (1987a)

    Article  Google Scholar 

  11. Masri, S.F., Miller, R.K., Saud, A.F., Caughey, T.K.: Identification of nonlinear vibrating structures; part II: application. J. Appl. Mech. 109, 923–929 (1987b)

    Article  Google Scholar 

  12. Kerschen, G., Golinval, G.C., Hemez, F.M.: Bayesian model screening for the identification of non-linear mechanical structures. J. Vib. Acoust. 83, 26–37 (2003)

    Google Scholar 

  13. Masri, S.F., Caffrey, J.P., Caughey, T.K., Smyth, A.W., Chassiakos, A.G.: Identification of the state equation in complex non-linear systems. Int. J. Non-Linear Mech. 39, 1111–1127 (2004)

    Article  MATH  Google Scholar 

  14. Masri, S.F., Caffery, J.P., Caughey, T.K., Smyth, A.W., Chassiakos, A.G.: A general data-based approach for developing reduced-order models of non-linear MDOF systems. Nonlinear Dyn. 39, 95–112 (2005)

    Article  MATH  Google Scholar 

  15. Masri, S.F., Tasbihgoo, F., Caffery, J.P., Smyth, A.W., Chassiakos, A.G.: Data-based model-free representation of complex hysteretic MDOF systems. Struct. Control Health Monit. 13, 365–387 (2006)

    Article  Google Scholar 

  16. Tasbihgoo, F., Caffrey, J.P., Masri, S.F.: Development of data-based model-free representation of non-conservative dissipative systems. Int. J. Non-Linear Mech. 42, 99–117 (2007)

    Article  Google Scholar 

  17. Purwar, S., Kar, I.N., Jha, A.N.: On-line system identification of complex systems using Chebyshev neural networks. Appl. Soft Comput. 7(1), 364–372 (2007)

    Article  Google Scholar 

  18. Bonisoli, E., Vigliani, A.: Identification techniques applied to a passive elasto-magnetic suspension. Mech. Syst. Signal Process. 21(3), 1479–1488 (2007)

    Article  Google Scholar 

  19. Rémond, D., Neyrand, J., Aridon, G., Dufour, R.: On the improved use of Chebyshev expansion for mechanical system identification. Mech. Syst. Signal Process. 22(2), 390–407 (2008)

    Article  Google Scholar 

  20. Yun, H.B., Masri, S.F., Wolfe, R.W., Benzoni, G.: Datadriven methodologies for change detection in large-scale nonlinear dampers with noisy measurements. J. Sound Vib. 322, 336–357 (2009)

    Article  Google Scholar 

  21. Hernandez-Garcia, M.R., Masri, S.F., Ghanem, R., Figueiredo, E., Farrar, C.R.: A structural decomposition approach for detecting, locating, and quantifying nonlinearities in chain-like systems. Struct. Control Health Monit. 17(7), 761–777 (2010)

    Article  Google Scholar 

  22. Mohammad, K.S., Worden, K., Tomlinson, G.R.: Direct parameter estimation for linear and nonlinear structures. J. Sound Vib. 152(3), 471–499 (1992)

    Article  MATH  Google Scholar 

  23. Yang, J.N., Huang, H.W., Lin, S.: Sequential non-linear least-square estimation for damage identification of structures. Int. J. Non-Linear Mech. 41, 124–140 (2006)

    Article  MATH  Google Scholar 

  24. Yang, J.N., Huang, H.W.: Sequential non-linear leastsquare estimation for damage identification of structures with unknown input and unknown output. Int. J. Non-Linear Mech. 41, 789–801 (2007a)

    Article  Google Scholar 

  25. Yang, J.N., Pan, S., Lin, S.: Least-square estimation with unknown excitations for damage identification of structures. Eng. Mech. 133(1), 12–21 (2007b)

    Article  Google Scholar 

  26. Xu, B., He, J., Zhou, R., Masri, S.F.: Data-based model free hysteresis identification for nonlinear structures. Eng. Sci. 8(2), 12–19 (2010)

    Google Scholar 

  27. Xu, B., He, J., Masri, S.F.: Data-based model-free hysteretic restoring force and mass identification for dynamic systems. Comput-Aided Civ. Infrastruct. 30, 2–18 (2015)

    Article  Google Scholar 

  28. Xu, B., He, J., Masri, S.F.: Data-based Identification of nonlinear restoring force under spatially incomplete excitations with power series polynomial model. Nonlinear Dyn. 67(3), 2063–2080 (2012)

    Article  MathSciNet  Google Scholar 

  29. He, J., Xu, B., Masri, S.F.: Restoring force and dynamic loadings identification for a nonlinear chain-like structure with partially unknown excitations. Nonlinear Dyn. 69(1–2), 231–245 (2012)

    Article  MathSciNet  Google Scholar 

  30. Xue, W.C., Zheng, Q.W., Liu, Z.Y., Li, J.: Developments of research and application of smart materials in controlling structural vibration. Earthq. Eng. Eng. Vib. 26(5), 213–217 (2006)

    Google Scholar 

  31. Wu, B., Sun, K.X., Li, H., Tang, W.S.: Experimental research on mechanical properties of shape memory alloy. Earthq. Eng. Eng. Vib. 19(2), 104–111 (1999)

    Google Scholar 

  32. Tanaka, K.: A thermomechanical sketch of shape memory effect: one dimensional tensile behavior. Res Mech. 18, 251–263 (1986)

    Google Scholar 

  33. Liang, C., Rogers, C.A.: The multi-dimensional constitutive relations of shape memory alloys. J. Eng. Math. 26, 429–443 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  34. Boyd, J.G., Lagoudas, D.C.: A thermodynamic constitutive model for the shape memory alloy materials. Part I. The monolithic shape memory alloy. Int. J. Plast. 12, 805–842 (1996)

    Article  MATH  Google Scholar 

  35. Jani, J.M., Learya, M., Subic, A., Gibson, M.A.: A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014)

    Article  Google Scholar 

  36. Auricchio, F., Coda, A., Reali, A., Urbano, M.: SMA numerical modeling versus experimental results: parameter identification and model prediction capabilities. J. Mater. Eng. Perform. 18, 649–654 (2009)

    Article  Google Scholar 

  37. Liang, C., Rogers, C.A.: One-dimensional thermomechanical constitutive relations for shape memory materials. J. Intell. Mater. Syst. Struct. 1(2), 207–234 (1990)

    Article  Google Scholar 

  38. Li, H., Mao, C.X.: Seismic response of buildings with SMA passive energy dissipation devices: analysis and design. Earthq. Eng. Eng. Vib. 21(4), 133–139 (2001)

    Google Scholar 

  39. Paraskevopoulos, P.N.: Chebyshev series appraoch to system identification, analysis and optimal control. J. Frankl. Inst. 316(2), 135–157 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support provided through the National Natural Science Foundation of China (NSFC) under Grants No. 50978092.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., He, J. & Dyke, S.J. Model-free nonlinear restoring force identification for SMA dampers with double Chebyshev polynomials: approach and validation. Nonlinear Dyn 82, 1507–1522 (2015). https://doi.org/10.1007/s11071-015-2257-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2257-0

Keywords

Navigation