Skip to main content
Log in

Two-dimensional structures in the quintic Ginzburg–Landau equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

By using ZEUS Linux cluster at Embry-Riddle Aeronautical University, we perform extensive numerical simulations based on a two-dimensional Fourier spectral method (Fourier spatial discretization combined with an explicit scheme for time differencing) to find the range of existence of the spatiotemporal solitons of the two-dimensional complex Ginzburg–Landau equation with cubic and quintic nonlinearities. We start from the system parameters used previously by Akhmediev and slowly vary them one by one to determine the regimes where solitons exist as stable/unstable structures. We present eight classes of dissipative solitons from which six are known (stationary, pulsating, vortex spinning rings, filament, exploding, creeping) and two are novel (creeping-vortex “propellers” and spinning “bean-shaped” solitons). By running lengthy simulations for the different parameters of the equation, we find ranges of existence of stable structures (stationary, pulsating, circular vortex spinning, organized exploding) and unstable structures (circularvortex spinning that leads to filament, disorganized exploding, and creeping). Moreover, by varying the two initial conditions together with vorticity, we find a richer behavior in the form of creeping-vortex “propellers” and spinning “bean-shaped” solitons. Each class differentiates from the other by distinctive features of their energy evolution, shape of initial conditions, as well as domain of existence of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering, vol. 149. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  2. Akhmediev, N., Ankiewicz, A.: Chap. 11. Chapman and Hall, London (1997)

    Google Scholar 

  3. Akhmediev, N., Ankiewicz, A.: Solitons of the complex Ginzburg-Landau equation. In: Trillo, S., Tourellas, W.E. (eds.) Spatial Solitons. Springer, Berlin (2001)

    Google Scholar 

  4. Akhmediev, N., Ankiewicz, A.: Dissipative Solitons in the CGLE and Swift-Hohenberg Equations. Dissipative Solitons. Springer, Berlin (2005)

    Google Scholar 

  5. Akhmediev, N., Ankiewicz, A.: Three sources and three components parts of the concept of dissipative solitons. Lect. Notes Phys 751, 1 (2008)

    Article  MathSciNet  Google Scholar 

  6. Akhmediev, N., Soto-Crespo, J.M.: Strongly asymmetric soliton explosions. Phys. Rev. E 70, 036613 (2004)

    Article  Google Scholar 

  7. Akhmediev, N., Soto-Crespo, J.M., Grelu, P.: Spatiotemporal optical solitons in nonlinear dissipative media: from stationary light bullets to pulsating complexes. Chaos 17, 037112 (2007)

    Article  MathSciNet  Google Scholar 

  8. Aleksić, N.B., Skarka, V., Timotijević, D.V., Gauthier, D.: Self-stabilized spatiotemporal dynamics of dissipative light bullets generated from inputs without spherical symmetry in three-dimensional Ginzburg–Landau systems. Phys. Rev. A 75, 061802 (2007)

  9. Alvarez, R., van Hecke, M., van Saarloos, W.: Sources and sinks separating domains of left-and right-traveling waves: experiment versus amplitude equations. Phys. Rev. E 56, 1306 (1997)

    Article  Google Scholar 

  10. Ankiewicz, A., Maruno, K., Akhmediev, N.: Exact soliton solutions of the one-dimensional complex Swift-Hohenberg equation. Phys. D 176, 44 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ankiewicz, A., Devine, N., Akhmediev, N., Soto-Crespo, J.M.: Continuously self-focusing and continuously self-defocusing 2-D beams in dissipative media. Phys. Rev. A 77, 033840 (2008)

    Article  Google Scholar 

  12. Aranson, I.S., Kramer, L.: The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bowman, C., Newell, A.C.: Natural patterns and wavelets. Rev. Mod. Phys. 70, 289 (1998)

    Article  Google Scholar 

  14. Brusch, L., Torcini, A., Bär, M.: Nonlinear analysis of the Eckhaus instability: modulated amplitude waves and phase chaos. Phys. D 160, 127 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brusch, L., Torcini, A., van Hecke, M., Zimmermann, M.G., Bär, M.: Modulated amplitude waves and defect formation in the one-dimensional complex Ginzburg–Landau equation. Phys. D 160, 127 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cartes, C., Cisternas, J., Descalzi, O., Brand, H.R.: Model of a two-dimensional extended chaotic system: evidence of diffusing dissipative solitons. Phys. Rev. Lett. 109, 178303 (2012)

    Article  Google Scholar 

  17. Cartes, C., Descalzi, O., Brand, H.R.: Noise can induce explosions for dissipative solitons. Phys. Rev. E 85, 015205 (2012)

    Article  Google Scholar 

  18. Chang, W., Ankiewicz, A., Akhmediev, N.: Creeping solitons in dissipative systems and their bifurcations. Phys. Rev. E 76, 016607 (2007)

    Article  MathSciNet  Google Scholar 

  19. Crasovan, L., Malomed, B.A., Mihalache, D.: Stable vortex solitons in the two-dimensional Ginzburg–Landau equation. Phys. Rev. E 63, 016605 (2000)

    Article  Google Scholar 

  20. Crasovan, L., Malomed, B.A., Mihalache, D.: Erupting, flat-top, and composite spiral solitons in the two-dimensional Ginzburg–Landau equation. Phys. Lett. A 289, 59 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Crasovan, L., Malomed, B.A., Mihalache, D.: Spinning solitons in cubic–quintic nonlinear media. Pramana J. Phys. 57, 1041 (2001)

    Article  Google Scholar 

  22. Descalzi, O., Brand, H.R.: Transition from modulated to exploding dissipative solitons: hysteresis, dynamics, and analytic aspects. Phys. Rev. E 82, 026203 (2010)

    Article  Google Scholar 

  23. Descalzi, O., Cartes, C., Cisternas, J., Brand, H.R.: Exploding dissipative solitons: the analog of the Ruelle–Takens route for spatially localized solutions. Phys. Rev. E 83, 056214 (2011)

    Article  Google Scholar 

  24. Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris, H.C.: Solitons and nonlinear wave equations. Academic, London (1982)

    MATH  Google Scholar 

  25. Doelman, A.: Traveling waves in the complex GL equation. J. Nonlin. Sci. 3, 225 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Drazin, P.G., Reid, W.H.: Hydrodynamic stability. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  27. Du, Q., Gunzburger, M., Peterson, J.: Analysis and approximation of the Ginzburg–Landau model of superconductivity. SIAM Rev. 34(1), 54–81 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. El-Wakil, S.A., Abulwafa, E.M., Zahran, M.A., Mahmoud, A.A.: Time-fractional KdV equation: formulation and solution using variational methods. Nonlinear Dyn. 64, 221 (2011)

    Article  MathSciNet  Google Scholar 

  29. Fabrizio, M.: Ginzburg–Landau equations and first and second order phase transitions. Int. J. Eng. Sci. 44, 529 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Holmes, P.: Spatial structure of time periodic solutions of the GL equation. Phys. D 23, 84 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kaup, D.J., Malomed, B.A.: The variational principle for nonlinear waves in dissipative systems. Phys. D 87, 155 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kaup, D.J., Malomed, B.A.: Embedded solitons in Lagrangian and semi-Lagrangian systems. Phys. D 184, 153 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Malomed, B., Gölles, M., Uzunov, I.M., Lederer, F.: Stability and interactions of pulses in simplified Ginzburg–Landau equations. Phys. Scr. 55, 73 (1997)

    Article  Google Scholar 

  34. Malomed, B.A.: Evolution of nonsoliton and “quasi-classical” wavetrains in nonlinear Schrödinger and Korteweg-de Vries equations with dissipative perturbations. Phys. D 29, 155 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mancas, S.C., Choudhury, S.R.: A novel variational approach to pulsating solitons in the cubic–quintic Ginzburg–Landau equation. Theor. Math. Phys. 152, 1160 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mancas, S.C., Choudhury, S.R.: Pulses and snakes in Ginzburg–Landau equation. Nonlinear Dyn. 152, 339 (2014)

    MathSciNet  Google Scholar 

  37. Newell, A.: Solitons in Mathematics and Physics. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1985)

    Google Scholar 

  38. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran 90. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  39. Rosu, H.C., Cornejo-Pérez, O., Ojeda-May, P.: Traveling kinks in cubic nonlinear Ginzburg–Landau equations. Phys. Rev. E 85, 037102 (2012)

    Article  Google Scholar 

  40. Skarka, V., Aleksić, N.B.: Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic–quintic Ginzburg–Landau equations. Phys. Rev. Lett. 96, 013903 (2006)

    Article  Google Scholar 

  41. Skarka, V., Aleksić, N.B., Leblond, H., Malomed, B.A., Mihalache, D.: The variety of stable vortical solitons in Ginzburg–Landau media with radially inhomogeneous losses. Phys. Rev. Lett 105, 213901 (2010)

    Article  Google Scholar 

  42. Skarka, V., Timotijević, D.V., Aleksić, N.B.: Extension of the stability criterion for dissipative optical soliton solutions of a two-dimensional Ginzburg–Landau system generated from asymmetric inputs. J. Opt. A 10(7), 075102 (2008)

    Article  Google Scholar 

  43. Soto-Crespo, J.M., Akhmediev, N.: Exploding soliton and front solutions of the complex cubic–quintic Ginzburg–Landau equation. Math. Comput. Simul. 69, 526 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Soto-Crespo, J.M., Akhmediev, N., Ankiewicz, A.: Pulsating, creeping, and erupting solitons in dissipative systems. Phys. Rev. Lett. 85, 2937 (2000)

    Article  Google Scholar 

  45. Soto-Crespo, J.M., Akhmediev, N., Devine, N., Mejia-Cortes, C.: Transformations of continuously self-focusing and continuously self-defocusing dissipative solitons. Opt. Express 16, 15388 (2008)

    Article  Google Scholar 

  46. Soto-Crespo, J.M., Akhmediev, N., Town, G.: Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked laser: CGLE approach. Phys. Rev. E 63, 056602 (2001)

    Article  Google Scholar 

  47. Soto-Crespo, J.M., Akhmediev, N., Grelu, P.: Optical bullets and double bullet complexes in dissipative systems. Phys. Rev. E 74, 046612 (2006)

    Article  Google Scholar 

  48. Soto-Crespo, J.M., Akhmediev, N., Mejia-Cortes, C., Devine, N.: Dissipative ring solitons with vorticity. Opt. Express 17, 4236 (2009)

    Article  Google Scholar 

  49. Theocharis, G., Frantzeskakis, D.J., Kevrekidis, P.G., Malomed, B.A., Kivshar, Y.S.: Ring dark solitons and vortex necklaces in Bose–Einstein condensates. Phys. Rev. Lett. 90, 120403 (2003)

    Article  Google Scholar 

  50. Trefethen, Lloyd N.: Spectral Methods in MATLAB. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)

    Book  MATH  Google Scholar 

  51. Uzunov, I.M., Georgiev, D.Z., Arabadzhiev, T.N.: Influence of intrapulse Raman scattering on stationary pulses in the presence of linear and nonlinear gain as well as spectral filtering. Phys. Rev. E 90, 042906 (2014)

    Article  Google Scholar 

  52. van Hecke, M., Storm, C., van Saarloos, W.: Sources, sinks and wave number selection in coupled CGL equations. Phys. D 134, 1 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  53. van Saarloos, W., Hohenberg, P.C.: Fronts, pulses, sources and sinks in generalized complex Ginzburg–Landau equation. Phys. D 56, 303 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan C. Mancas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bérard, F., Vandamme, CJ. & Mancas, S.C. Two-dimensional structures in the quintic Ginzburg–Landau equation. Nonlinear Dyn 81, 1413–1433 (2015). https://doi.org/10.1007/s11071-015-2077-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2077-2

Keywords

Navigation