Skip to main content
Log in

Dynamical behaviors and soliton solutions of a generalized higher-order nonlinear Schrödinger equation in optical fibers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under study in this paper is a generalized higher-order nonlinear Schrödinger (GHNLS) equation with the third-order dispersion (TOD), self-steeping (SS) and stimulated Raman scattering effects , which describes the propagation of ultrashort pulses in optical fibers. Via the phase plane analysis, both the homoclinic and heteroclinic orbits are found in the two-dimensional plane autonomous system reduced from the GHNLS equation, which proves the existence of bright and dark soliton solutions from the viewpoint of nonlinear dynamics. Furthermore, through the method of binary Bell polynomials and auxiliary function, the explicit bright and dark soliton solutions under certain conditions are obtained. Particular analysis is made to study the effects of the higher-order on the double-hump bright and double-hole dark solitons. The results show that the self-phase modulation and SS parameters determine the interval between two humps for the double-hump bright soliton, while the one for the double-hole dark soliton is related with the TOD and SS effects. Moreover, numerical simulations show that the double-hump bright soliton and the double-hole dark soliton are more stable when the amplitude or depth is comparably small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Watanabe, S.: Optical signal processing using nonlinear fibers. J. Opt. Fiber Commun. Rep. 3, 1–24 (2006)

    Article  Google Scholar 

  2. Willner, A.E., Khaleghi, S., Chitgarha, M.R., Yilmaz, O.F.: All-optical signal processing. J. Light. Tech. 32, 660–680 (2014)

    Article  Google Scholar 

  3. Doran, N.J., Blow, K.J.: Solitons in optical communications. IEEE J. Quan. Electron. 19, 1883–1888 (1983)

    Article  Google Scholar 

  4. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142 (1973)

    Article  Google Scholar 

  5. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion. Appl. Phys. Lett. 23, 171 (1973)

    Article  Google Scholar 

  6. Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980)

    Article  Google Scholar 

  7. Emplit, P., Hamaide, J.P., Reynaud, F., Froehly, C., Barthelemy, A.: Picosecond steps and dark pulses through nonlinear single mode fibers. Opt. Commun. 62, 374–379 (1987)

    Article  Google Scholar 

  8. Agrawal, G.P.: Nonlinear Fiber Optics. Academic, California (2002)

    Google Scholar 

  9. Mitschke, F.M., Mollenauer, L.F.: Random walk of coherently amplified solitons in optical fiber transmission. Opt. Lett. 11, 665–667 (1986)

    Article  Google Scholar 

  10. Gordon, J.P.: Theory of the soliton self-frequency shift. Opt. Lett. 11, 662–664 (1986)

    Article  Google Scholar 

  11. Porsezian, K., Nakkeeran, K.: Optical solitons in presence of Kerr dispersion and self-frequency shift. Phys. Rev. Lett. 76, 3955–3958 (1996)

    Article  Google Scholar 

  12. Kivshar, Yu S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic, San Diego (2003)

    Google Scholar 

  13. Porsezian, K.: Soliton models in resonant and nonresonant optical fibers. Pramāna 57, 1003–1039 (2001)

    Article  Google Scholar 

  14. Mihalache, D., Torner, L., Moldoveanu, F., Panoiu, N.C., Truta, N.: Inverse-scattering approach to femtosecond solitons in monomode optical fibers. Phys. Rev. E 48, 4699–4709 (1993)

    Article  Google Scholar 

  15. Gedalin, M., Scott, T., Band, Y.: Optical solitary waves in the higher order nonlinear Schrödinger equation. Phys. Rev. Lett. 78, 448–451 (1997)

    Article  Google Scholar 

  16. Mihalache, D., Truta, N., Crasovan, L.C.: Painlevé analysis and bright solitary waves of the higher-order nonlinear Schrödinger equation containing third-order dispersion and self-steepening term. Phys. Rev. E 56, 1064–1070 (1997)

    Article  MathSciNet  Google Scholar 

  17. Nijhof, J.H.B., Roelofs, G.H.M.: Prolongation structures of a higher-order nonlinear Schrödinger equation. J. Phys. A 25, 2403–2416 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805–809 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sasa, N., Satsuma, J.: New-type of soliton solutions for a higher-order nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 60, 409–417 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Xu, Z.Y., Li, L., Li, Z.H., Zhou, G.S.: Soliton interaction under the influence of higher-order effects. Opt. Commun. 210, 375–384 (2002)

    Article  Google Scholar 

  21. Gilson, C., Hietarinta, J., Nimmo, J., Ohta, Y.: Sasa-Satsuma higher-order nonlinear Schrödinger equation and its bilinearization and multisoliton solutions. Phys. Rev. E 68, 016614 (2008)

    Article  MathSciNet  Google Scholar 

  22. Palacios, S.L., Guinea, A., Fernández, J.M., Crespo, R.D.: Dark solitary waves in the nonlinear Schrödinger equation with third order dispersion, self-steepening, and self-frequency shift. Phys. Rev. E 60, R45–R47 (1999)

    Article  Google Scholar 

  23. Jiang, Y., Tian, B.: Dark and dark-like-bright solitons for a higher-order nonlinear Schrödinger equation in optical fibers. EPL 102, 10010 (2013)

  24. Jiang, Y., Tian, B., Li, M., Wang, P.: Bright hump solitons for the higher-order nonlinear Schröinger equation in optical fibers. Nonlinear Dyn. 74, 1053–1063 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  25. Xu, J., Fan, E.: The unified transform method for the Sasa-Satsuma equation on the half-line. Proc. R. Soc. A 469, 20130068 (2013)

  26. Xu, T., Wang, D.H., Li, M., Liang, H.: Soliton and breather solutions of the Sasa-Satsuma equation via the Darboux transformation. Phys. Scr. 89, 075207 (2014)

    Article  Google Scholar 

  27. Zhao, L.C., Li, S.C., Ling, L.M.: Rational W-shaped solitons on a continuous-wave background in the Sasa-Satsuma equation. Phys. Rev. E 89, 023210 (2014)

    Article  Google Scholar 

  28. Alligood, K.T., Sauer, T.D., Yorke, J.A.: An Introduction to Dynamical Systems. Springer, Berlin (2000)

    Google Scholar 

  29. Ablowitz, M.A., Clarkson, P.A.: Solitons Nonlinear Evolution Equations and Inverse Scattering. Cambridge University, Cambridge (1992)

    Google Scholar 

  30. Guo, R., Hao, H.Q.: Breathers and localized solitons for the Hirota–Maxwell–Bloch system on constant backgrounds in erbium doped fibers. Ann. Phys. 344, 10–16 (2014)

    Article  Google Scholar 

  31. Guo, R., Hao, H.Q., Zhang, L.L.: Dynamic behaviors of the breather solutions for the AB system in fluid mechanics. Nonlinear Dyn. 74, 701–709 (2013)

    Article  MathSciNet  Google Scholar 

  32. Liu, S.D., Liu, S.K.: Soliton Wave and Turbulence (Chinese version). Shanghai Scientific and Technological Education, Shanghai (1994)

    Google Scholar 

  33. Infeld, E., Rowlands, G.: Nolinear Waves Solitons and Chaos. Cambridge University, Cambridge (2000)

    Book  Google Scholar 

  34. Akhmediev, N., Ankiewicz, A.: Multi-soliton complexes. Chaos 10, 600–612 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  35. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University, Cambridge (2004)

    Book  MATH  Google Scholar 

  36. Lambert, F., Springael, J.: Soliton equations and simple combinatorics. Acta Appl. Math. 102, 147–178 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. Gilson, C., Lambert, F., Nimmo, J., Willox, R.: On the combinatorics of the Hirota D-operators. Proc. R. Soc. Lond. A 452, 223–234 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  38. Bao, W., Jin, S., Markowich, P.A.: On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175, 487–524 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  39. Bao, W., Jin, S., Markowich, P.A.: Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes. SIAM J. Sci. Comput. 25, 27–64 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  40. Sanders, B.F., Katopodes, N.D., Boyd, J.P.: Spectral modeling of nonlinear dispersive waves. J. Hydraul. Eng. 124, 2–12 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Fundamental Research Funds of the Central Universities (Project Nos. 2014QN30 and 2014ZZD10), by the National Natural Science Foundations of China (Grant Nos. 11426105, 11371371,-11305060, 11271126 and 11247267) and by the Postdoctoral Science Foundation of China (2013M540907).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Li or Tao Xu.

Appendix

Appendix

Some necessary notations on the Bell polynomials can be seen as follows:

Let \(f=f(x_1,\ldots ,x_n)\) be a \(C^{\infty }\) multi-variable function then, the multi-dimensional Bell polynomials can be defined as below [36, 37]:

$$\begin{aligned} Y_{n_1x_1,\ldots ,n_lx_l}(f)&\equiv Y_{n_1,\ldots ,n_l}(f_{r_1x_1,\ldots ,r_lx_l})\nonumber \\&= e^{-f}\partial ^{n_1}_{x_1}\cdots \partial ^{n_l}_{x_l}e^{f}\,, \end{aligned}$$
(37)

where \(f_{r_1x_1,\ldots ,r_lx_l}=\partial ^{r_1}_{x_1}\cdots \partial ^{r_l}_{x_l}\,f\, (r_k=0,\ldots ,n_k,k=1,\ldots ,l)\) and \(Y_{n_1x_1,\ldots ,n_lx_l}(f)\) denotes the multi-variable polynomial with respect to \(f_{r_1x_1,\ldots ,r_lx_l}\). In particular, for \(f=f(x,t)\), the associated two-dimensional Bell polynomials are

$$\begin{aligned}&Y_{2x}(f)=f_{2x}+f^{2}_x\,,\quad Y_{x,t}(f)=f_{x,t}+f_xf_t\,,\end{aligned}$$
(38)
$$\begin{aligned}&Y_{3x}(f)=f_{3x}+3f_{2x}f_{x}+f^{3}_x\,,\end{aligned}$$
(39)
$$\begin{aligned}&Y_{2x,t}(f)=f_{2x,t}+f_{2x}f_t+2f_{x,t}f_x+f^{2}_xf_t\,,\quad \ldots \,.\nonumber \\ \end{aligned}$$
(40)

In order to differ the odd- and even-order derivatives of \(f_{r_1x_1,\ldots ,r_lx_l}\), the multi-dimensional binary Bell polynomial (\({\fancyscript{Y}}\)-polynomial) is introduced as follows [37]:

$$\begin{aligned}&{\fancyscript{Y}}_{n_1x_1,\ldots ,n_lx_l}(\nu ,\omega )\nonumber \\&\quad =Y_{n_1x_1,\ldots ,n_lx_l}(f)\Bigg |_{f_{r_1x_1,\ldots ,r_lx_l} \left\{ \begin{array}{l} \nu _{r_1x_1,\ldots ,r_lx_l},\\ (r_1+\cdots +r_l \,\,\mathrm{is}\,\,\mathrm{odd}).\\ \omega _{r_1x_1,\ldots ,r_lx_l},\\ (r_1+\cdots +r_l \,\,\mathrm{is}\,\, \mathrm{even}). \end{array}\right. } \end{aligned}$$

Then, Eqs. (38), (39) and (40) can be rewritten in the form of binary Bell polynomials as

$$\begin{aligned}&{\fancyscript{Y}}_{2x}(\nu ,\omega )=\omega _{2x}+\nu ^{2}_x\,,\quad {\fancyscript{Y}}_{x,t} (\nu ,\omega )=\omega _{x,t}+\nu _x\nu _t\,,\nonumber \\&{\fancyscript{Y}}_{3x}(\nu ,\omega )=\nu _{3x}+3\omega _{2x}\nu _{x}+\nu ^{3}_x\,,\nonumber \\&{\fancyscript{Y}}_{2x,t}(\nu ,\omega )=\nu _{2x,t}+\omega _{2x}\nu _t +2\omega _{x,t}\nu _x+\nu ^{2}_x\nu _t\,,\quad \ldots \,.\nonumber \end{aligned}$$

Note that the \({\fancyscript{Y}}\)-polynomial and the Hirota expression \(D^{n_1}_{x_1}\cdots D^{n_l}_{x_l}F\cdot G\) can be linked by the identity [37]

$$\begin{aligned}&(FG)^{-1}D^{n_1}_{x_1}\cdots D^{n_l}_{x_l}F\cdot G\nonumber \\&\quad ={\fancyscript{Y}}_{n_1x_1,\ldots ,n_lx_l}(\nu =\ln {F/G},\omega =\ln {FG})\,, \end{aligned}$$
(41)

where the Hirota bilinear operators are defined by [35]

$$\begin{aligned}&D^{n_1}_{x_1}\cdots D^{n_l}_{x_l}(F\cdot G)=\left( \frac{\partial }{\partial x_1}-\frac{\partial }{\partial x^{'}_1}\right) ^{n_1}{\cdots }\nonumber \\&\quad \times \left( \frac{\partial }{\partial x_l} {-}\frac{\partial }{\partial x^{'}_{l}}\right) ^{n_l}F(x_1,\ldots ,x_l)\nonumber \\&\quad \times \, G(x^{'}_1,\ldots ,x^{'}_l)\bigg |_{x^{'}_1{=}x_1,\ldots ,x^{'}_l=x_l}\,.\nonumber \end{aligned}$$

In particular, when \(F=G\), Eq. (41) becomes

$$\begin{aligned}&(G)^{-2}D^{n_1}_{x_1}\cdots D^{n_l}_{x_l}G\cdot G\nonumber \\&\quad ={\fancyscript{Y}}_{n_1x_1,\ldots ,n_lx_l}(\nu =0,\omega =2\ln {G})\nonumber \\&\quad =\left\{ \begin{array}{ll} 0, &{}\quad n_1+\cdots +n_l \,\,\mathrm{is}\,\,\mathrm{odd}\,,\\ P_{n_1x_1,\ldots ,n_lx_l}(\omega ),&{}\quad n_1+\cdots +n_l \,\,\mathrm{is}\,\, \mathrm{even}, \end{array}\right. \end{aligned}$$
(42)

where the \(P\)-polynomials take the even part partitional structure

$$\begin{aligned} P_{2x}(\omega )&= \omega _{2x}\,,\quad P_{x,t}(\omega )=\omega _{xt}\,,\end{aligned}$$
(43)
$$\begin{aligned} P_{4x}(\omega )&= \omega _{4x}+3\,\omega ^2_{2x}\ldots \,. \end{aligned}$$
(44)

Therefore, a nonlinear equation can be transformed into the corresponding bilinear equation via Expressions (41), (43) and (44), once this nonlinear equation is expressible as a linear combination of \({\fancyscript{Y}}\)-polynomials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Xu, T. & Wang, L. Dynamical behaviors and soliton solutions of a generalized higher-order nonlinear Schrödinger equation in optical fibers. Nonlinear Dyn 80, 1451–1461 (2015). https://doi.org/10.1007/s11071-015-1954-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1954-z

Keywords

Navigation