Skip to main content
Log in

Homoclinic, subharmonic, and superharmonic bifurcations for a pendulum with periodically varying length

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Dynamic behavior of a weightless rod with a point mass sliding along the rod axis according to periodic law is studied. This is the simplest model of child’s swing. Melnikov’s analysis is carried out to find bifurcations of homoclinic, subharmonic oscillatory, and subharmonic rotational orbits. For the analysis of superharmonic rotational orbits, the averaging method is used and stability of obtained approximate solution is checked. The analytical results are compared with numerical simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kauderer, H.: Nichtlineare Mechanik. Springer, Berlin (1958)

    Book  MATH  Google Scholar 

  2. Bogoliubov, N.N., Mitropolsky, Y.A.: Asymptotic Methods in the Theory of Non-Linear Oscillations. Gordon and Breach, New York (1961)

    Google Scholar 

  3. Panovko, Ya.G., Gubanova, I.I.: Stability and Oscillations of Elastic Systems. Modern Concepts, Paradoxes and Mistakes. Nauka, Moscow (1987). in Russian

  4. Magnus, K.: Schwingungen. Eine Einfuhrung in die theoretische Behandlung von Schwingungensproblemen. J. Teubner, Stuttgart (1976)

  5. Seyranian, A.P.: The swing: parametric resonance. J. Appl. Math. Mech. 68(5), 757–764 (2004)

    Article  MathSciNet  Google Scholar 

  6. Seyranian, A.P., Belyakov, A.O.: Swing dynamics. Dokl. Phys. 53(7), 388–394 (2004)

    Article  Google Scholar 

  7. Zevin, A.A., Filonenko, L.A.: Qualitative study of oscillations of a pendulum with periodically varying length and a mathematical model of swing. J. Appl. Math. Mech. 71(6), 892–904 (2007)

    Article  MathSciNet  Google Scholar 

  8. Belyakov, A.O., Seyranian, A.P., Luongo, A.: Dynamics of the pendulum with periodically varying length. Phys. D 238(16), 1589–1597 (2009)

    Article  MATH  Google Scholar 

  9. Belyakov, A.O., Seyranian, A.P.: Dynamics of a pendulum of variable length and similar problems. In: Awrejcewicz, J., Hagedorn, P. (eds.) Nonlinearity, Bifurcation and Chaos—Theory and Applications, pp. 69–100. InTech, Rijeka (2012)

    Google Scholar 

  10. Markeev, A.P.: Uniform rotations of a variable-length pendulum. Dokl. Phys. 56(4), 240–243 (2011)

    Article  Google Scholar 

  11. Markeyev, A.P.: The rotations of a pendulum excited by a high-frequency harmonic variation of its length. J. Appl. Math. Mech. 76(4), 388–392 (2012)

    Article  MathSciNet  Google Scholar 

  12. Koch, B.P., Leven, R.W.: Subharmonic and homoclinic bifurcations in a parametrically forced pendulum. Phys. D 16, 1–13 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mann, B.P., Koplow, M.A.: Symmetry breaking bifurcations of a parametrically excited pendulum. Nonlinear Dyn. 46, 427–437 (2006)

    Article  MATH  Google Scholar 

  14. Xu, X., Wiercigroch, M.: Approximate analytical solutions for oscillatory and rotational motion of a parametric pendulum. Nonlinear Dyn. 47, 311–320 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Melnikov, V.K.: On stability of a center under periodic in time perturbations. Trudy Moskovskogo Matematicheskogo Obshestva 12, 3–52 (1963). in Russian

    Google Scholar 

  16. Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations. Dynamical Systems and Bifurcations of Vector Fields. Springer, Berlin (1983)

  17. Szemplińska-Stupnicka, W.: The analytical predictive criteria for chaos and escape in nonlinear oscillators: a survey. Nonlinear Dyn. 7, 129–147 (1995)

    Article  Google Scholar 

  18. Kuznetsov, S.P.: Dynamical Chaos. Physmatlit, Moscow (2006). in Russian

  19. Tabor, M.: Chaos and Integrability in Nonlinear Dynamics: An Introduction. Wiley, New York (1989)

    MATH  Google Scholar 

  20. Markeev, A.D.: Theoretical Mechanics. Nauka, Moscow (1990). in Russian

    MATH  Google Scholar 

  21. Volosov, V.M., Morgunov, B.I.: Averaging Method in the Theory of Nonlinear Oscillatoratory Systems. MSU, Moscow (1971). in Russian

    Google Scholar 

  22. Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Scientists, 2nd edn. Springer, New York (1971)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This research was partly supported by the Austrian Science Fund (FWF) under Grant P25979-N25 and by the Russian Foundation for Basic Research (RFBR), Grant No. 13-01-00261.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton O. Belyakov.

Appendices

Appendices

Melnikov function for homoclinic orbit

$$\begin{aligned} M^{\pm }&= 8\varepsilon \omega ^2\int _{-\infty }^{\infty }\frac{\sin (\tau )\,\mathrm{\,d}\tau }{\cosh ^2\!\left( \omega \left( \tau -\tau _0\right) \right) }\nonumber \\&-\,4\beta \omega ^3\int _{-\infty }^{\infty }\frac{\mathrm{\,d}\tau }{\cosh ^2\!\left( \omega \left( \tau -\tau _0\right) \right) }\nonumber \\&+\, 4\varepsilon \omega ^3\int _{-\infty }^{\infty }\frac{\cos \!\left( \tau \right) \sinh \!\left( \omega \left( \tau -\tau _0\right) \right) }{\cosh ^3\! \left( \omega \left( \tau -\tau _0\right) \right) }\mathrm{\,d}\tau , \end{aligned}$$
(51)

we denote \(M^{\pm } = 8\varepsilon \omega ^2 I_1 - 4\beta \omega ^3 I_2 + 4\varepsilon \omega ^3 I_3\), where

$$\begin{aligned} I_{1}&= \int _{-\infty }^{\infty }\frac{\sin (\tau ) \mathrm{\,d}\tau }{\cosh ^2\!\left( \omega \left( \tau -\tau _0\right) \right) } = \frac{1}{\omega }\!\int _{-\infty }^{\infty }\frac{\sin \!\left( \tau _0+\eta /\omega \right) \mathrm{\,d}\eta }{\cosh ^2\!\left( \eta \right) } \nonumber \\&= \frac{\sin \!\left( \tau _0\right) }{\omega }\!\int _{-\infty }^{\infty }\!\frac{\cos \!\left( \eta /\omega \right) \!\mathrm{\,d}\eta }{\cosh ^2\!\left( \eta \right) }\nonumber \\&+ \frac{\cos \!\left( \tau _0\right) }{\omega }\!\int _{-\infty }^{\infty }\!\frac{\sin \!\left( \eta /\omega \right) \!\mathrm{\,d}\eta }{\cosh ^2\!\left( \eta \right) }. \end{aligned}$$
(52)

The integral \(\int _{-\infty }^{\infty }\frac{\sin \!\left( \eta /\omega \right) \mathrm{\,d}\eta }{\cosh ^2\!\left( \eta \right) }\) is zero because its integrand is an odd function, while the other integral has even integrand and can be calculated as follows: \(\int _{-\infty }^{\infty }\frac{\cos (t/\omega )}{\cosh ^2 t}\mathrm{\,d}t = \frac{\pi }{\omega \sinh (\pi /2\omega )}\); hence, the first term has the expression

$$\begin{aligned} I_{1}&= \frac{\pi \sin \left( \tau _0\right) }{\omega ^2\sinh (\pi /2\omega )}. \end{aligned}$$
(53)

The second integral can be calculated as follows:

$$\begin{aligned} I_2&= \int _{-\infty }^{\infty }\frac{\mathrm{\,d}\tau }{\cosh ^2\!\left( \omega \left( \tau -\tau _0\right) \right) } = \frac{1}{\omega }\int _{-\infty }^{\infty }\frac{\mathrm{\,d}s}{\cosh ^2\!\left( s\right) } = \frac{2}{\omega }, \nonumber \\ \end{aligned}$$
(54)

while the integral \(I_3\) can be converted to \(I_1\) via integration by parts using the relation \(\frac{\sinh (s)\mathrm{\,d}s}{\cosh ^3(s)} = -\frac{1}{2}\mathrm{\,d}\frac{1}{\cosh ^2(s)}\) as

$$\begin{aligned} I_3&= \int _{-\infty }^{\infty }\frac{\cos (\tau )\,\sinh \left( \omega \left( \tau -\tau _0\right) \right) }{\cosh ^3\!\left( \omega \left( \tau -\tau _0\right) \right) }\mathrm{\,d}\tau ,\nonumber \\&= \frac{1}{\omega }\int _{-\infty }^{\infty }\frac{\cos (\tau _0 + \eta /\omega )\,\sinh \left( \eta \right) }{\cosh ^3\!\left( \eta \right) }\mathrm{\,d}\eta \nonumber \\&= -\frac{1}{2\omega ^2}\left. \frac{\cos (\tau _0 + \eta /\omega )}{\cosh ^2\!\left( \eta \right) }\right| _{-\infty }^{\infty }\nonumber \\&- \frac{1}{2\omega ^2}\int _{-\infty }^{\infty }\frac{\sin (\tau _0 + \eta /\omega )}{\cosh ^2\!\left( \eta \right) }\mathrm{\,d}\eta \nonumber \\&= - \frac{I_1}{2\omega }. \end{aligned}$$
(55)

Thus, \(M^{\pm } = 8\varepsilon \omega ^2 I_1 - 4\beta \omega ^3 I_2 + 4\varepsilon \omega ^3 I_3 = \frac{6\pi \varepsilon \sin \left( \tau _0\right) }{\sinh (\pi /2\omega )} - 8\beta \omega ^2\).

Melnikov function for subharmonic oscillations

$$\begin{aligned} M^{p/q}&= 4\omega ^2 k^2 \int _{0}^{2\pi q}\left( 2\varepsilon \sin (\tau )-\beta \omega \right) \mathrm{\,cn}^2\nonumber \\&\times \left( \omega \left( \tau -\tau _0\right) ,k\right) \mathrm{\,d}\tau \nonumber \\&+\,4\varepsilon \omega ^3 k^2 \int _{0}^{2\pi q}\cos (\tau )\mathrm{\,sn}\!\left( \omega \left( \tau -\tau _0\right) ,k\right) \nonumber \\&\times \mathrm{\,dn}\!\left( \omega \left( \tau -\tau _0\right) ,k\right) \mathrm{\,cn}\!\left( \omega \left( \tau -\tau _0\right) ,k\right) \mathrm{\,d}\tau ,\nonumber \\ \end{aligned}$$
(56)

so we denote \(M^{p/q} = 8\varepsilon \omega ^2 k^2 I_1 - 4\beta \omega ^3 k^2 I_2 + 4\varepsilon \omega ^3 k^2 I_3\),

$$\begin{aligned} I_1&= \int _{0}^{2\pi q}\sin (\tau )\mathrm{\,cn}^2\!\left( \omega \left( \tau -\tau _0\right) ,k\right) \mathrm{\,d}\tau \nonumber \\&= -\left. \cos (\tau )\mathrm{\,cn}^2\!\left( \omega \left( \tau -\tau _0\right) ,k\right) \right| _{0}^{2\pi q} - 2\omega I_3\nonumber \\&= - 2\omega I_3, \end{aligned}$$
(57)
$$\begin{aligned} I_2&= \int _{0}^{2\pi q}\mathrm{\,cn}^2\!\left( \omega \left( \tau -\tau _0\right) ,k\right) \mathrm{\,d}\tau , \end{aligned}$$
(58)
$$\begin{aligned} I_3&= \int _{0}^{2\pi q}\cos (\tau )\mathrm{\,cn}\!\left( \omega \left( \tau -\tau _0\right) ,k\right) \mathrm{\,sn}\!\left( \omega \left( \tau -\tau _0\right) ,k\right) \nonumber \\&\times \mathrm{\,dn}\!\left( \omega \left( \tau -\tau _0\right) ,k\right) \mathrm{\,d}\tau , \end{aligned}$$
(59)

where we use the formula \(\frac{\mathrm{\,d}\mathrm{\,cn}(u)}{\mathrm{\,d}u} = - \mathrm{\,sn}(u)\,\mathrm{\,dn}(u)\). Thus, we have \(M^{q/p} = -12\varepsilon \omega ^{3} k^2 I_3 - 4\beta \omega ^3 k^2 I_2\).

$$\begin{aligned} I_1&= \int _{0}^{2\pi q}\sin (\tau )\mathrm{\,cn}^2\!\left( \omega \left( \tau -\tau _0\right) ,k\right) \mathrm{\,d}\tau \nonumber \\&= \frac{1}{\omega }\int _{0}^{2\pi q \omega }\sin (\tau _0 + s/\omega )\mathrm{\,cn}^2\!\left( s,k\right) \mathrm{\,d}s\nonumber \\&= \frac{\sin (\tau _0)}{\omega }\int _{0}^{2\pi q \omega }\cos (s/\omega )\mathrm{\,cn}^2\!\left( s,k\right) \mathrm{\,d}s. \end{aligned}$$
(60)

The integral \(I_3\) vanishes except for \(p=1\) and even \(q\). In this case we have from (312.02) in [22]

$$\begin{aligned}&I_2 = \frac{4\omega }{k^2}\left( E(k)-(k'^2)K(k)\right) , \\&I_3 = -\frac{\pi }{k^2\omega }\frac{\sin \tau _0}{\sinh (K(k'))}, \end{aligned}$$

where \(k'^2=1-k^2\). So we have (24).

Melnikov function for subharmonic rotations

$$\begin{aligned} M^{q/r}&= 4\omega ^2 k^2 \int _{0}^{2\pi q}\left( 2\varepsilon \sin (\tau )-\beta \omega \right) \mathrm{\,dn}^2\nonumber \\&\times \left( \omega k \left( \tau -\tau _0\right) ,\frac{1}{k}\right) \mathrm{\,d}\tau \nonumber \\&+\,4\varepsilon \omega ^3 k \int _{0}^{2\pi q}\cos (\tau )\mathrm{\,sn}\!\left( \omega k\left( \tau -\tau _0\right) ,\frac{1}{k}\right) \nonumber \\&\times \mathrm{\,dn}\!\left( \omega k\left( \tau -\tau _0\right) ,\frac{1}{k}\right) \mathrm{\,cn}\!\left( \omega k\left( \tau -\tau _0\right) ,\frac{1}{k}\right) \mathrm{\,d}\tau ,\nonumber \\ \end{aligned}$$
(61)

so we denote \(M^{q/r} = 8\varepsilon \omega ^2 k^2 I_1 - 4\beta \omega ^3 k^2 I_2 + 4\varepsilon \omega ^3 k I_3\),

$$\begin{aligned} I_1&= \int _{0}^{2\pi q}\sin (\tau )\mathrm{\,dn}^2\!\left( \omega k\left( \tau -\tau _0\right) ,\frac{1}{k}\right) \mathrm{\,d}\tau = - \frac{2\omega }{k} I_3\nonumber \\&-\left. \cos (\tau )\,\mathrm{\,dn}^2\left( \omega k\left( \tau -\tau _0\right) ,\frac{1}{k}\right) \right| _{0}^{2\pi q} = - \frac{2\omega }{k} I_3, \end{aligned}$$
(62)
$$\begin{aligned} I_2&= \int _{0}^{2\pi q}\mathrm{\,dn}^2\!\left( \omega k\left( \tau -\tau _0\right) ,\frac{1}{k}\right) \mathrm{\,d}\tau , \end{aligned}$$
(63)
$$\begin{aligned} I_3&= \int _{0}^{2\pi q}\cos \!\left( \tau \right) \mathrm{\,sn}\!\left( \omega k\left( \tau -\tau _0\right) , \frac{1}{k}\right) \nonumber \\&\times \mathrm{\,dn}\!\left( \omega k\left( \tau -\tau _0\right) ,\frac{1}{k}\right) \mathrm{\,cn}\! \left( \omega k\left( \tau -\tau _0\right) \!,\frac{1}{k}\right) \!\mathrm{\,d}\tau ,\nonumber \\ \end{aligned}$$
(64)

where we use the formula \(\frac{\mathrm{\,d}\mathrm{\,dn}(u,\frac{1}{k})}{\mathrm{\,d}u} = - \frac{\mathrm{\,sn}(u,\frac{1}{k})\,\mathrm{\,cn}(u,\frac{1}{k})}{k^2}\). Thus, we have \(M^{q/r} = -12\varepsilon \omega ^3 k^2 I_3 - 4\beta \omega ^3 k^2 I_2\).

The integral \(I_3\) vanishes except for \(r=1\). In this case we have

$$\begin{aligned} I_2 = \frac{2}{\omega k}\, E\!\left( \frac{1}{k}\right) , \quad I_3 = -\frac{\pi }{k^2\omega }\frac{\sin \tau _0}{\sinh (K')}, \end{aligned}$$

where \(K' = K\!\left( \sqrt{1-1/k^2}\right) \). So we have (30)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyakov, A.O., Seyranian, A.P. Homoclinic, subharmonic, and superharmonic bifurcations for a pendulum with periodically varying length. Nonlinear Dyn 77, 1617–1627 (2014). https://doi.org/10.1007/s11071-014-1404-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1404-3

Keywords

Navigation