Skip to main content
Log in

Solving nonlinear stochastic differential equations with fractional Brownian motion using reducibility approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents some sufficient and necessary conditions for reducing the nonlinear stochastic differential equations (SDEs) with fractional Brownian motion (fBm) to the linear SDEs. The explicit solution of the reduced equation is computed by its integral equation or the variation of parameters technique. Two illustrative examples are provided to demonstrate the applicability of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kolmogorov, A.N.: The Wiener spiral and some other interesting curves in Hilbert space. Dokl. Akad. Nauk SSSR 26, 115–118 (1940)

    Google Scholar 

  2. Hurst, H.E.: Long-term storage capacity in reservoirs. Trans. Am. Soc. Civ. Eng. 116, 400–410 (1951)

    Google Scholar 

  3. Hurst, H.E.: Methods of using long-term storage in reservoirs. ICE Proc. 5, 519–543 (1956)

    Article  Google Scholar 

  4. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  5. Decreusefond, L., Üstünel, A.S.: Fractional Brownian motion: theory and applications. ESAIM Proc. 5, 75–86 (1998)

    Article  MATH  Google Scholar 

  6. Biagini, F., Hu, Y., Øksendal, B., Zhang, T.: Stochastic Calculus for Fractional Brownian Motion and Applications, Probability and Its Applications. Springer, London (2008)

    Book  Google Scholar 

  7. Mishura, Y.S.: Stochastic Calculus for Fractional Brownian Motion and Related Processes. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  8. Rogers, L.C.G.: Arbitrage with fractional Brownian motion. Math. Finance 7, 95–105 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dellacherie, C., Meyer, P.A.: Probability and Potentials B. North-Holland, Amsterdam (1982)

    Google Scholar 

  10. Lin, S.J.: Stochastic analysis of fractional Brownian motions. Stoch. Stoch. Rep. 55, 121–140 (1995)

    MATH  Google Scholar 

  11. Decreusefond, L., Üstünel, A.S.: Stochastic analysis of the fractional Brownian motion. Potential Anal. 10, 177–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duncan, T.E., Hu, Y., Pasik-Duncan, B.: Stochastic calculus for fractional Brownian motion. I. Theory. SIAM J. Control Optim. 38, 582–612 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Alòs, E., Mazet, O., Nualart, D.: Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29, 766–801 (2000)

    Google Scholar 

  14. Elliott, R.C., Van der Hoek, J.: A general fractional white noise theory and applications to finance. Math. Finance 13, 301–330 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Carmona, P., Coutin, L., Montseny, G.: Stochastic integration with respect to fractional Brownian motion. Ann. I. H. Poincaré Probab. Stat. 39, 27–68 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Biagini, F., Øksendal, B., Sulem, A., Wallner, N.: An introduction to white noise theory and Malliavin calculus for fractional Brownian motion. Proc. R. Soc. 460, 347–372 (2004)

    Article  MATH  Google Scholar 

  17. Jolis, M.: On the Wiener integral with respect to the fractional Brownian motion on an interval. J. Math. Anal. Appl. 330, 1115–1127 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mandelbrot, B.B.: The variation of certain speculative prices. J. Bus. 36, 394–419 (1963)

    Article  Google Scholar 

  19. Gilden, D.L., Thornton, T., Mallon, M.W.: 1/f noise in human cognition. Science 267, 1837–1839 (1995)

    Article  Google Scholar 

  20. Perez, D.G., Zunino, L., Garavaglia, M.: Modeling turbulent wavefront phase as a fractional Brownian motion: a new approach. J. Opt. Soc. Am. 21, 1962–1969 (2004)

    Article  MathSciNet  Google Scholar 

  21. Osorio, I., Frei, M.: Hurst parameter estimation for epileptic seizure detection. Commun. Inf. Syst. 7, 167–176 (2007)

    MathSciNet  Google Scholar 

  22. Doukhan, P., Oppenheim, G., Taqqu, M.S.: Theory and Applications of Long-Range Dependence. Birkhäuser, Basel (2003)

    MATH  Google Scholar 

  23. Gard, T.C.: Introduction to Stochastic Differential Equations. Dekker, New York (1988)

    MATH  Google Scholar 

  24. Unal, G., Dinler, A.: Exact linearization of one dimensional Itô equations driven by fBm: analytical and numerical solutions. Nonlinear Dyn. 53, 251–259 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schwartz, E.S.: The stochastic behavior of commodity prices: implications for valuation and hedging. J. Finance 52, 923–973 (1997)

    Article  Google Scholar 

  26. Neuenkirch, A.: Optimal approximation of SDE’s with additive fractional noise. J. Complex. 22, 459–474 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Polansky, P.: Invariant distributions for multipopulation models in random environments. Theor. Popul. Biol. 16, 25–34 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Quan Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, C., Yang, Q. & Chen, Y.Q. Solving nonlinear stochastic differential equations with fractional Brownian motion using reducibility approach. Nonlinear Dyn 67, 2719–2726 (2012). https://doi.org/10.1007/s11071-011-0183-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0183-3

Keywords

Navigation