Skip to main content
Log in

Stability of nonlinear periodic vibrations of 3D beams

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The geometrically nonlinear periodic vibrations of beams with rectangular cross section under harmonic forces are investigated using a p-version finite element method. The beams vibrate in space; hence they experience longitudinal, torsional, and nonplanar bending deformations. The model is based on Timoshenko’s theory for bending and assumes that, under torsion, the cross section rotates as a rigid body and is free to warp in the longitudinal direction, as in Saint-Venant’s theory. The theory employed is valid for moderate rotations and displacements, and physical phenomena like internal resonances and change of the stability of the solutions can be investigated. Green’s nonlinear strain tensor and Hooke’s law are considered and isotropic and elastic beams are investigated. The equation of motion is derived by the principle of virtual work. The differential equations of motion are converted into a nonlinear algebraic form employing the harmonic balance method, and then solved by the arc-length continuation method. The variation of the amplitude of vibration in space with the excitation frequency of vibration is determined and presented in the form of response curves. The stability of the solution is investigated by Floquet’s theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodges, D.: Nonlinear Composite Beam Theory. AIAA, Virginia (2006)

    Google Scholar 

  2. Lazer, A.C., McKenna, P.J.: Large-amplitude periodic oscillations in suspension bridges—some new connections with nonlinear analysis. SIAM Rev. 32, 537–578 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Conley, W.G., Raman, A., Krousgrill, C.M., Mohammadi, S.: Nonlinear and nonplanar dynamics of suspended nanotube and nanowire resonators. Nano Lett. 8, 1590–1595 (2008)

    Article  Google Scholar 

  4. Perisanu, S., Barois, T., Ayari, A., Poncharal, P., Choueib, M., Purcell, S.T., Vincent, P.: Beyond the linear and duffing regimes in nanomechanics: circularly polarized mechanical resonances of nanocantilevers. Phys. Rev. B 81 (2010)

  5. Klinkel, S., Govingjee, S.: Anisotropic bending-torsion coupling for warping in a non-linear beam. Comput. Mech. 31, 78–87 (2003)

    Article  MATH  Google Scholar 

  6. Ganapathi, M., Patel, B., Polit, O., Touratier, M.: A C-1 finite element including transverse shear and torsion warping for rectangular sandwich beams. Int. J. Numer. Methods Eng. 45, 47–75 (1999)

    Article  MATH  Google Scholar 

  7. Eslimy-Isfahany, S., Banerjee, J.: Use of generalized mass in the interpretation of dynamic responce of bending—torsion coupled beams. J. Sound Vib. 238(2), 295–308 (2000)

    Article  Google Scholar 

  8. Banerjee, J., Su, H.: Free transverse and lateral vibration of beams with torsional coupling. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 19, 13–20 (2006)

    Google Scholar 

  9. Cusumano, J., Moon, F.: Chaotic non-planar vibrations of the thin elastica. Part I. Experimental observation of planar instability. J. Sound Vib. 179(2), 185–208 (1995)

    Article  Google Scholar 

  10. Silva, M., Zaretzky, C.: Nonlinear flexural-flexural-torsional interactions in beams including the effect of torsional dynamics. I. Primary Resonance. Nonlinear Dyn. 5, 3–23 (1994)

    Google Scholar 

  11. Sharf, I.: Geometrically non-linear beam element for dynamic simulation of multibody systems. Int. J. Numer. Methods Eng. 39, 763–786 (1996)

    Article  MATH  Google Scholar 

  12. Cao, D., Tucker, R.: Nonlinear dynamics of elastic rods using the Cosserat theory: modelling and simulation. Int. J. Solids Struct. 45, 460–477 (2008)

    Article  MATH  Google Scholar 

  13. Mohri, F., Azrar, L., Potier-Ferry, M.: Flexural-torsional post-buckling analysis of thin-walled elements with open sections. Thin-Walled Struct. 39, 907–938 (2001)

    Article  Google Scholar 

  14. Mohri, F., Damil, N., Potier-Ferry, M.: Large torsion finite element model for thin-walled beams. Comput. Struct. 86, 671–683 (2008)

    Article  Google Scholar 

  15. Sapountzakis, E., Dourakopoulos, J.: Nonlinear dynamic analysis of Timoshenko beams by BEM. Part I. Theory and numerical implementation. Nonlinear Dyn. 58, 295–306 (2009)

    Article  MATH  Google Scholar 

  16. Sapountzakis, E., Dourakopoulos, J.: Flexural-torsional postbuckling analysis of beams of arbitrary cross section. Acta Mech. 209, 67–84 (2010)

    Article  MATH  Google Scholar 

  17. Cardoso, J., Benedito, N., Valido, A.: Finite element analysis of thin-walled composite laminated beams with geometrically nonlinear behavior including warping deformation. Thin-Walled Struct. 47, 1363–1372 (2009)

    Article  Google Scholar 

  18. Stoykov, S., Ribeiro, P.: Nonlinear forced vibrations and static deformations of 3D beams with rectangular cross section. The influence of warping, shear deformation and longitudinal displacements. Int. J. Mech. Sci. 52, 1505–1521 (2010)

    Article  Google Scholar 

  19. Alonso, R., Ribeiro, P.: Flexural and torsional non-linear free vibrations of beams using a p-version finite element. Comput. Struct. 86, 1189–1197 (2008)

    Article  Google Scholar 

  20. Stoykov, S., Ribeiro, P.: Nonlinear free vibrations of beams in space due to internal resonance. J. Sound Vib. 330, 4574–4595 (2011)

    Article  Google Scholar 

  21. Ewins, D.J.: Modal Testing: Theory, Practice and Application. Research Studies Press, Baldock (2000)

    Google Scholar 

  22. Wang, C., Reddy, J., Lee, K.: Shear Deformable Beams and Plates. Elsevier, Oxford (2000)

    MATH  Google Scholar 

  23. Wempner, G., Talaslidis, D.: Mechanics of Solids and Shells. Theory and Application. CRC Press, Boca Raton (2003)

    Google Scholar 

  24. Sokolnikoff, I.: Mathematical Theory of Elasticity. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  25. Fung, Y.C.: Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs (1965)

    Google Scholar 

  26. Ribeiro, P.: Hierarchical finite element analyses of geometrically non-linear vibration of beams and plane frames. J. Sound Vib. 246, 225–244 (2001)

    Article  Google Scholar 

  27. Petyt, M.: Introduction to Finite Element Vibration Analysis. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  28. Szemplinska-Stupnicka, W.: The Behaviour of Nonlinear Vibrating Systems. Kluwer Academic, Dordrecht (1990)

    Book  MATH  Google Scholar 

  29. Lewandowski, R.: Non-linear free vibration of beams by the finite element and continuation methods. J. Sound Vib. 170, 539–593 (1994)

    Article  Google Scholar 

  30. Ribeiro, P., Petyt, M.: Non-linear vibration of beams with internal resonance by the hierarchical finite-element method. J. Sound Vib. 224, 591–624 (1999)

    Article  Google Scholar 

  31. Riks, E.: An incremental approach to the solution of snapping and buckling problems. Int. J. Solids Struct. 15, 529–551 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lazarus, A., Thomas, O.: A harmonic-based method for computing the stability of periodic solutions of dynamical systems. C. R., Méc. 338, 510–517 (2010)

    MATH  Google Scholar 

  33. Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical Recipes in Fortran 77: The Art of Scientific Computing. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  34. Nayfeh, A., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley-VCH, New York (1995)

    Book  MATH  Google Scholar 

  35. Wolfe, H.: An experimental investigation of nonlinear behaviour of beams and plates excited to high levels of dynamic response, Ph.D. thesis, University of Southampton (1995)

  36. Ribeiro, P.: Non-linear forced vibrations of thin/thick beams and plates by the finite element and shooting methods. Comput. Struct. 82, 1413–1423 (2004)

    Article  Google Scholar 

  37. Thomas, O., Lazarus, A., Touzé, C.: A harmonic-based method for computing the stability of periodic oscillations of non-linear structural systems. In: Proceedings of the ASME 2010 IDETC/CIE 2010, Montreal, Canada (2010)

    Google Scholar 

  38. Bathe, K.: Finite Element Procedures. Prentice-Hall, New York (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Stoykov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoykov, S., Ribeiro, P. Stability of nonlinear periodic vibrations of 3D beams. Nonlinear Dyn 66, 335–353 (2011). https://doi.org/10.1007/s11071-011-0150-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0150-z

Keywords

Navigation