Skip to main content
Log in

Experimental and numerical investigations of impacting cantilever beams part 1: first mode response

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the dynamic behavior of a cantilever beam impacting two flexible stops as well as rigid stops is studied both experimentally and numerically. The effect of contact stiffness, clearance, and contacting materials is studied in detail. For the numerical study of the system, a finite element model is created and the resulting differential equations are solved using a Time Variational Method (TVM). To achieve higher computational efficiency, the Newton–Krylov method is used along with TVM. Experimental results validate the contact model proposed for predicting the first mode system dynamics. A new nonlinear force estimation function has been proposed based on measured accelerations, which enables the understanding of the impact dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo, G.W., Xie, J.H.: Hopf bifurcations and chaos of a two-degree-of-freedom vibro-impact system in two strong resonance cases. Int. J. Non-Linear Mech. 37, 19–34 (2002)

    Article  MATH  Google Scholar 

  2. Luo, G.W., Xie, J.H.: Hopf bifurcations of a two -degree of freedom vibro-impact system. J. Sound Vib. 213(3), 391–408 (1998)

    Article  MathSciNet  Google Scholar 

  3. Wang, L., Ni, Q., Huang, Y.: Bifurcations and chaos in a forced cantilever system with impacts. J. Sound Vib. 296, 1068–1078 (2006)

    Article  Google Scholar 

  4. Ervin, E.K., Wickert, J.A.: Repetitive impact response of a beam structure subjected to harmonic base excitation. J. Sound Vib. 307, 2–19 (2007)

    Article  Google Scholar 

  5. Blazejczyk-Okolewska, B., Czolczynski, K., Kapitaniak, T.: Dynamics of a two-degree-of-freedom cantilever beam with impacts. Chaos Solitons Fractals 40, 1991–2006 (2009)

    Article  MATH  Google Scholar 

  6. Blazejczyk-Okolewska, B., Czolczynski, K., Kapitaniak, T.: Hard versus soft impacts in oscillatory systems modeling. Commun. Nonlinear Sci. Numer. Simul. 15, 1358–1367 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blazejczyk-Okolewska, B., Czolczynski, K., Kapitaniak, T.: The effect of discretization on the numerical simulation of the vibrations of the impacting cantilever beam. Commun. Nonlinear Sci. Numer. Simul. 15, 3073–3090 (2010)

    Article  MathSciNet  Google Scholar 

  8. Padmanabhan, C., Singh, R.: Analysis of periodically excited nonlinear systems by a parametric continuation technique. J. Sound Vib. 184(1), 35–58 (1995)

    Article  Google Scholar 

  9. Ragothama, A., Narayanan, S.: Bifurcations and chaos in geared rotor bearing system by incremental harmonic balance method. J. Sound Vib. 226(3), 469–492 (1999)

    Article  Google Scholar 

  10. van de Vorst, E.L.B., van Campen, D.H., De Kraker, A.: Periodic solutions of a multi-dof beam system with impact. J. Sound Vib. 192(5), 913–925 (1996)

    Article  Google Scholar 

  11. Yin, X.C., Qin, Y., Zou, H.: Transient responses of repeated impact of a beam against a stop. Int. J. Solids Struct. 44, 7323–7339 (2007)

    Article  MATH  Google Scholar 

  12. Wagg, D.J.: A note on using the collocation method for modelling the dynamics of a flexible continuous beam subject to impacts. J. Sound Vib. 276, 1128–1134 (2004)

    Article  Google Scholar 

  13. Knudsen, J., Massih, A.R.: Vibro-impact dynamics of a periodically forced beam. J. Press. Vessel Technol. 122, 210–211 (2000)

    Article  Google Scholar 

  14. Rigaud, E., Perret-Liaudet, J.: Experiments and numerical results on nonlinear vibrations of an impacting hertzian contact. Part 1: harmonic excitation. J. Sound Vib. 265, 289–307 (2003)

    Article  Google Scholar 

  15. Blankenship, W., Kahraman, A.: Steady state forced response of a mechanical oscillator with combined parametric excitation and clearance type nonlinearity. J. Sound Vib. 185, 743–765 (1995)

    Article  MATH  Google Scholar 

  16. van de Vorst, E.L.B., Heertjes, M.F., van Campen, D.H., De Kraker, A., Fey, R.H.B.: Experimental and numerical analysis of the steady state behaviour of a beam system with impact. J. Sound Vib. 212(2), 321–336 (1998)

    Article  Google Scholar 

  17. Wagg, D.J., Karpodinis, G., Bishop, S.R.: An experimental study of the impulse response of a vibro-impacting cantilever beam. J. Sound Vib. 228(2), 243–264 (1999)

    Article  Google Scholar 

  18. Wagg, D.J., Bishop, S.R.: Application of non-smooth modelling techniques to the dynamics of a flexible impacting beam. J. Sound Vib. 256, 803–820 (2002)

    Article  Google Scholar 

  19. Jalali, H., Ahmadian, H., Pourahmadian, F.: Identification of micro-vibro-impacts at boundary condition of a nonlinear beam. Mech. Syst. Signal Process. 25, 1073–1085 (2011)

    Article  Google Scholar 

  20. Praveen Krishna, I.R., Padmanabhan, C.: Investigations on the nonlinear behavior of a cantilever beam with end stops. In: The 9th International Conference on Motion and Vibration Control (MOVIC 2008), Munich, September 15–18, 2008

    Google Scholar 

  21. Borri, M., Bottasso, C., Mantegazza, C.: Basic features of the time finite element approach for dynamics. Meccanica 27, 119–130 (1992)

    Article  MATH  Google Scholar 

  22. Wang, Y.: Stick-slip motion of frictionally damped turbine airfoils: A finite element in time (fet) approach. J. Vib. Acoust. 119, 236–242 (1997)

    Article  Google Scholar 

  23. Wang, Y.: A temporal finite element method for the dynamics analysis of flexible mechanisms. J. Sound Vib. 213(3), 569–576 (1998)

    Article  Google Scholar 

  24. Rook, T.: An alternate method to the alternating time-frequency method. Nonlinear Dyn. 27, 327–339 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yousef, S.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    MATH  Google Scholar 

  26. Brown, P., Saad, Y.: Hybrid methods for nonlinear systems of equations. SIAM J. Sci. Stat. Comput. 11(3), 450–481 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method. Fundamentals of Algorithms. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  28. Han, S.: Retrieving the time history of displacement from measured acceleration signal. KSME Int. J. 17(2), 197–206 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Padmanabhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Praveen Krishna, I.R., Padmanabhan, C. Experimental and numerical investigations of impacting cantilever beams part 1: first mode response. Nonlinear Dyn 67, 1985–2000 (2012). https://doi.org/10.1007/s11071-011-0123-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0123-2

Keywords

Navigation