Skip to main content
Log in

Nonlinear vibrations of FGM rectangular plates in thermal environments

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Geometrically nonlinear vibrations of FGM rectangular plates in thermal environments are investigated via multi-modal energy approach. Both nonlinear first-order shear deformation theory and von Karman theory are used to model simply supported FGM plates with movable edges. Using Lagrange equations of motion, the energy functional is reduced to a system of infinite nonlinear ordinary differential equations with quadratic and cubic nonlinearities. A pseudo-arclength continuation and collocation scheme is used and it is revealed that, in order to obtain the accurate natural frequency in thermal environments, an analysis based on the full nonlinear model is unavoidable since the plate loses its original flat configuration due to thermal loads. The effect of temperature variations as well as volume fraction exponent is discussed and it is illustrated that thermally deformed FGM plates have stronger hardening behaviour; on the other hand, the effect of volume fraction exponent is not significant, but modal interactions may rise in thermally deformed FGM plates that could not be seen in their undeformed isotropic counterparts. Moreover, a bifurcation analysis is carried out using Gear’s backward differentiation formula (BDF); bifurcation diagrams of Poincaré maps and maximum Lyapunov exponents are obtained in order to detect and classify bifurcations and complex nonlinear dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  2. Reddy, J.N., Chin, C.D.: Thermomechanical analysis of functionally graded cylinders and plates. J. Therm. Stresses 21, 593–626 (1998)

    Article  Google Scholar 

  3. Zenkour, A.M.: A comprehensive analysis of functionally graded sandwich plates: Part 1—Deflection and stresses. Int. J. Solids Struct. 42, 5224–5242 (2005)

    Article  MATH  Google Scholar 

  4. Chi, S.H., Chung, Y.L.: Mechanical behaviour of functionally graded material plates under transverse load-Part 1: Analysis. Int. J. Solids Struct. 43, 3657–3674 (2006)

    Article  MATH  Google Scholar 

  5. Matsunaga, H.: Free vibration and stability of functionally graded plates according to a 2-D higher order deformation theory. Compos. Struct. 82, 499–512 (2008)

    Article  Google Scholar 

  6. Vel, S.S., Batra, R.C.: Three dimensional exact solution for the vibration of functionally graded rectangular plates. J. Sound Vib. 272, 703–730 (2004)

    Article  Google Scholar 

  7. Qian, L.F., Batra, R.C., Chen, L.M.: Static and dynamic deformations of thick functionally graded elastic plate using higher-order shear and normal deformable plate theory and meshless local Petrov–Galerkin method. Compos., Part B, Eng. 35, 685–697 (2004)

    Article  Google Scholar 

  8. Abrate, S.: Free vibration, buckling and static deflections of functionally graded plates. Compos. Sci. Technol. 66, 2383–2394 (2006)

    Article  Google Scholar 

  9. Yang, J., Shen, H.S.: Dynamic response of initially stressed functionally graded thin plates. Compos. Struct. 54, 497–508 (2001)

    Article  Google Scholar 

  10. Yang, J., Shen, H.S.: Vibration characteristics and transient response of shear deformable functionally graded plates in thermal environments. J. Sound Vib. 255, 579–602 (2002)

    Article  Google Scholar 

  11. Kim, Y.W.: Temperature dependent vibration analysis of functionally graded rectangular plates. J. Sound Vib. 284, 531–549 (2005)

    Article  Google Scholar 

  12. Li, Q., Iu, V.P., Kou, K.P.: Three-dimensional vibration analysis of functionally graded material plates in thermal environment. J. Sound Vib. 324, 733–750 (2009)

    Article  Google Scholar 

  13. Shen, H.S.: Functionally Graded Materials, Nonlinear Analysis of Plates and Shells. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  14. Hunag, X.L., Shen, H.S.: Nonlinear vibration and dynamic response of functionally graded plates in thermal environments. Int. J. Solids Struct. 41, 2403–2427 (2004)

    Article  Google Scholar 

  15. Xia, X.K., Shen, H.S.: Vibration of post buckled FGM hybrid laminated plates in thermal environment. Eng. Struct. 30, 2420–2435 (2008)

    Article  Google Scholar 

  16. Xia, X.L., Shen, H.S.: Vibration of post-buckled sandwich plates with FGM face sheets in a thermal environment. J. Sound Vib. 314, 254–274 (2008)

    Article  Google Scholar 

  17. Sundararajan, N., Prakash, T., Ganapathi, M.: Nonlinear free flexural vibrations of functionally graded rectangular and skew plates under thermal environments. Finite Elem. Anal. Des. 42, 152–168 (2005)

    Article  Google Scholar 

  18. Woo, J., Meguid, S.A., Ong, L.S.: Nonlinear free vibration behaviour of functionally graded plates. J. Sound Vib. 289, 595–611 (2006)

    Article  Google Scholar 

  19. Kitipornchai, S., Yang, J., Liew, K.M.: Semi-analytical solution for nonlinear vibration of laminated FGM plates with geometric imperfections. Int. J. Solids Struct. 41, 2235–2257 (2004)

    Article  MATH  Google Scholar 

  20. Amabili, M.: Theory and experiments for large amplitude vibration of rectangular plates with geometric imperfections. J. Sound Vib. 291, 539–565 (2006)

    Article  Google Scholar 

  21. Amabili, M., Farhadi, S.: Shear deformable versus classical theories for nonlinear vibrations of isotropic and laminated composite plates. J. Sound Vib. 320, 649–667 (2009)

    Article  Google Scholar 

  22. Amabili, M.: Geometrically nonlinear vibration of rectangular plates carrying a concentrated mass. J. Sound Vib. 329, 4501–4514 (2010)

    Article  Google Scholar 

  23. Chang, S.I., Bajaj, A.K., Krousgrill, C.M.: Nonlinear vibrations and chaos in harmonically excited rectangular plates with one-to-one internal resonance. Nonlinear Dyn. 4, 433–460 (1993)

    Article  Google Scholar 

  24. Bakhtiari-Nejad, F., Nazari, M.: Nonlinear vibration analysis of isotropic cantilever plates with viscoelastic laminate. Nonlinear Dyn. 56, 325–356 (2009)

    Article  MATH  Google Scholar 

  25. Amabili, M., Carra, S.: Thermal effects on geometrically nonlinear vibrations of rectangular plates with fixed edges. J. Sound Vib. 321, 936–954 (2009)

    Article  Google Scholar 

  26. Ribeiro, P.: Thermally induced transitions to chaos in plate vibrations. J. Sound Vib. 299, 314–330 (2007)

    Article  Google Scholar 

  27. Hao, Y.X., Chen, L.H., Zhang, W., Lei, J.G.: Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate. J. Sound Vib. 312, 862–892 (2008)

    Article  Google Scholar 

  28. Zhang, W., Yang, J., Hao, Y.: Chaotic vibrations of an orthotropic FGM rectangular plate based on third-order shear deformation theory. Nonlinear Dyn. 59, 619–660 (2010)

    Article  MATH  Google Scholar 

  29. Touloukian, Y.S.: Thermo Physical Properties of High Temperature Solid Materials. McMillan, New York (1967)

    Google Scholar 

  30. Javaheri, R., Eslami, M.R.: Thermal buckling of functionally graded plates. AIAA J. 40, 162–169 (2002)

    Article  Google Scholar 

  31. Lee, Y.Y., Zhao, X., Reddy, J.N.: Postbuckling analysis of functionally graded plates subject to compressive and thermal loads. Comput. Methods Appl. Mech. Eng. 199, 1645–1653 (2010)

    Article  MathSciNet  Google Scholar 

  32. Alijani, F., Amabili, M., Bakhtiari-Nejad, F.: On the accuracy of the multiple scales method for non-linear vibrations of doubly curved shallow shells. Int. J. Non-Linear Mech. 160, 170–179 (2011)

    Article  Google Scholar 

  33. Alijani, F., Amabili, M., Karagiozis, K., Bakhtiari-Nejad, F.: Nonlinear vibrations of functionally graded doubly curved shallow shells. J. Sound Vib. 330, 1432–1454 (2011)

    Article  Google Scholar 

  34. Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Sandstede, B., Wang, X.: AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont). Concordia University, Montréal (1998)

    Google Scholar 

  35. Liew, K.M., Yang, J., Wu, Y.F.: Nonlinear vibration of a coating-FGM-substrate cylindrical panel subjected to temperature gradient. Comput. Methods Appl. Mech. Eng. 195, 1007–1026 (2006)

    Article  MATH  Google Scholar 

  36. Amabili, M., Karagiozis, K., Khorshidi, K.: Nonlinear vibrations of rectangular laminated composite plates with different boundary conditions. Int. J. Struct. Stab. Dyn. (2011, accepted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bakhtiari-Nejad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alijani, F., Bakhtiari-Nejad, F. & Amabili, M. Nonlinear vibrations of FGM rectangular plates in thermal environments. Nonlinear Dyn 66, 251–270 (2011). https://doi.org/10.1007/s11071-011-0049-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0049-8

Keywords

Navigation