Skip to main content

Advertisement

Log in

Incorporating the climate oscillations in the computation of meteorological drought over India

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Large-scale climate oscillations (e.g. Nino 3.4, SOI, MEI and IOD) govern the occurrence of meteorological droughts. The present study is envisaged to model non-stationary meteorological drought index, at the grid scale covering entire India by considering the large-scale climate oscillations affecting the phenomenon of precipitation. The non-stationary framework is considered to estimate the Standardized Precipitation Index (SPI), which in turn is used for analysing the frequency of severe and extreme drought events for two reference time periods (i.e. 1901–1950 and 1951–2018) at various timescales, viz. 3, 6, 9 and 12 months. The efficiency of non-stationary SPI (NSPI) approach over stationary SPI (SSPI) approach in characterizing the drought events is evaluated based on two precipitation datasets from the India Meteorological Department (IMD) and Climate Research Unit (CRU). The NSPI is observed to outperform the SSPI in assessing the meteorological droughts at majority of the grids over India as the timescale increases from 3 to 12 months. Different sets of climate oscillations with significant correlation with precipitation are identified for IMD and CRU datasets as well as for different reference periods, indicating that the drought characterization is sensitive to the chosen reference time period as well as the precipitation datasets considered for the analysis. Overall the NSPI approach is shown to provide reliable and robust determination of drought characteristics by incorporating the climate oscillations under changing climate. The findings from this study can be used to devise adaptation strategies to mitigate adverse impacts of droughts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the Indian Institute of Technology (IIT) Ropar for facilitating this research. The authors are also grateful to the anonymous reviewers for their insightful comments and suggestions.

Funding

The authors declare that no funds, grants or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by DCN, SRC and PS. The first draft of the manuscript was written by DCN, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sagar Rohidas Chavan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9846 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiru Naik, D., Chavan, S.R. & Sonali, P. Incorporating the climate oscillations in the computation of meteorological drought over India. Nat Hazards 117, 2617–2646 (2023). https://doi.org/10.1007/s11069-023-05958-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-023-05958-3

Keywords

Navigation