Skip to main content

Advertisement

Log in

Land use land cover representation through supervised machine learning methods: sensitivity on simulation of urban thunderstorms in the east coast of India

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

This study assesses the sensitivity of Land Use Land Cover (LULC) representation on the evolution of mesoscale convective systems over Bhubaneswar, a rapidly growing city (~ 77% growth in the last two decades) in India. In this study, three types of LULC maps have been prepared using supervised machine learning (ML) methods such as Classification and Regression Trees (CART), Naive Bayes (NB), and Support Vector Machine (SVM) on Google Earth Engine (GEE) platform using Landsat 8 for 2014. A high accuracy score (87%) and kappa coefficient (84%) revealed the best performance of CART in generating the LULC map. The Weather Research and Forecasting (WRF) model at 6 and 2 km horizontal resolution is forced with these LULC maps. Model results highlight that the CART experiment exhibits relatively less bias in 2 m relative humidity (~ – 10% to – 5%), 2 m temperature (~ 2.5 °C to ~ 0 °C), and 10 m wind speed (– 1 to ~ 1.8 m s−1) up to peak stage of the thunderstorms. The CART performs better with less rainfall error (~ – 16 mm) than CNTL (~ – 33 mm), NB (~ – 37 mm), and SVM (~ – 38 mm) and is supported by the quantitative statistical analysis, viz. less false alarm ratio, critical success index for different thresholds. LULC class-wise analysis indicates a higher variation in surface and lower atmospheric parameters over urban, shrubland, and cropland while less variation over barren, forest, and water. Thus, the study highlights the credibility of ML models in representing LULC information to input the high-resolution models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data and material availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The numerical modeling code and the data used are freely available and accessible.

References

  • Ahmed S, Bharat A (2012) Wind field modifications in habitable urban areas. Curr World Environ 7(2):267

    Article  Google Scholar 

  • Anasuya B, Swain D, Vinoj V (2019) Rapid urbanization and associated impacts on land surface temperature changes over Bhubaneswar Urban District India. Environ Monit Assess 191(3):1–13

    Google Scholar 

  • Bhardwaj P, Singh O, Kumar D (2017) Spatial and temporal variations in thunderstorm casualties over India. Singap J Trop Geogr 38(3):293–312

    Article  Google Scholar 

  • Bhavana M, Gupta K, Pal PK, Kumar AS, Gummapu J (2018) Evaluation of high resolution urban LULC for seasonal forecasts of urban climate using WRF model. ISPRS Ann Photogramm, Remote Sens Spat Inf Sci 4:303–310

    Article  Google Scholar 

  • Bishop CM (2006) Pattern recognition and machine learning. Springer, New York, NY

    Google Scholar 

  • Bornstein R, Lin Q (2000) Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies. Atmos Environ 34(3):507–516

    Article  Google Scholar 

  • Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    Article  Google Scholar 

  • Cheng FY, Hsu YC, Lin PL, Lin TH (2013) Investigation of the effects of different land use and land cover patterns on mesoscale meteorological simulations in the Taiwan area. J Appl Meteorol Climatol 52(3):570–587

    Article  Google Scholar 

  • Copernicus climate change service (C3S) (2017) ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. copernicus climate change service climate data store (CDS), 2018/12. Available at: https://cds.climate.copernicus.eu/cdsapp# !/home

  • Ebert EE, Janowiak JE, Kidd C (2007) Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull Am Meteor Soc 88(1):47–64

    Article  Google Scholar 

  • Foody GM, Mathur A (2004) A relative evaluation of multiclass image classification by support vector machines. IEEE Trans Geosci Remote Sens 42(6):1335–1343

    Article  Google Scholar 

  • Gharai B, Rao PVN, Dutt CBS (2018) Mesoscale model compatible IRS-P6 AWiFS-derived land use/land cover of Indian region. Curr Sci 115(12):2301–2306

    Article  Google Scholar 

  • Gogoi PP, Vinoj V, Swain D, Roberts G, Dash J, Tripathy S (2019) Land use and land cover change effect on surface temperature over Eastern India. Sci Rep 9(1):1–10

    Article  Google Scholar 

  • Gomes VC, Queiroz GR, Ferreira KR (2020) An overview of platforms for big earth observation data management and analysis. Remote Sens 12(8):1253

    Article  Google Scholar 

  • Göndöcs J, Breuer H, Pongrácz R, Bartholy J (2017) Urban heat island mesoscale modelling study for the Budapest agglomeration area using the WRF model. Urban Clim 21:66–86

    Article  Google Scholar 

  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27

    Article  Google Scholar 

  • Halder S, Saha SK, Dirmeyer PA, Chase TN, Goswami BN (2016) Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model. Hydrol Earth Syst Sci 20(5):1765–1784

    Article  Google Scholar 

  • Hall SJ, Learned J, Ruddell B, Larson KL, Cavender-Bares J, Bettez N, Groffman PM, Grove JM, Heffernan JB, Hobbie SE, Morse JL, Trammell TLE (2016) Convergence of microclimate in residential landscapes across diverse cities in the United States. Landsc Ecol 31(1):101–117

    Article  Google Scholar 

  • Hou AY, Kakar RK, Neeck S, Azarbarzin AA, Kummerow CD, Kojima M, Oki R, Nakamura K, Iguchi T (2014) The global precipitation measurement mission. Bull Am Meteorol Soc 95(5):701–722

    Article  Google Scholar 

  • John GH, and Langley P (1995) Estimating continuous distributions in bayesian classifiers. in proceedings of the eleventh conference on uncertainty in artificial intelligence

  • Kavzoglu T, Colkesen I (2009) A kernel functions analysis for support vector machines for land cover classification. Int J Appl Earth Obs Geoinf 11(5):352–359

    Google Scholar 

  • Khan MFA, Muhammad K, Bashir S, Ud Din S, Hanif M (2021) Mapping allochemical limestone formations in Hazara, Pakistan using google cloud architecture: application of machine-learning algorithms on multispectral data. ISPRS Int J Geo Inf 10(2):58

    Article  Google Scholar 

  • Killough B (2018, July). Overview of the open data cube initiative. In IGARSS 2018–2018 IEEE international geoscience and remote sensing symposium (pp. 8629–8632). IEEE

  • Kuncheva LI (2006) On the optimality of Naïve Bayes with dependent binary features. Pattern Recogn Lett 27(7):830–837

    Article  Google Scholar 

  • Lal P, Shekhar A, Kumar A (2021) Quantifying temperature and precipitation change caused by land cover change: a case study of India using the WRF model. Front Environ Sci 9:1–14, 766328. https://doi.org/10.3389/fenvs.2021.766328

    Article  Google Scholar 

  • Lawrence RL, Wright A (2001) Rule-based classification systems using classification and regression tree (CART) analysis. Photogramm Eng Remote Sens 67(10):1137–1142

    Google Scholar 

  • Li X, Mitra C, Dong L, Yang Q (2018) Understanding land use change impacts on microclimate using weather research and forecasting (WRF) model. Phys Chem Earth, Parts a/b/c 103:115–126

    Article  Google Scholar 

  • Lin CY, Chen WC, Chang PL, Sheng YF (2011) Impact of the urban heat island effect on precipitation over a complex geographic environment in northern Taiwan. J Appl Meteorol Climatol 50(2):339–353

    Article  Google Scholar 

  • Litta AJ, Mohanty UC, Idicula SM (2012) The diagnosis of severe thunderstorms with high-resolution WRF model. J Earth Syst Sci 121(2):297–316

    Article  Google Scholar 

  • Litta AJ, Mohanty UC (2008) Simulation of a severe thunderstorm event during the field experiment of STORM programme 2006, using WRF–NMM model. Curr Sci 95:204–215

    Google Scholar 

  • Liu C, Moncrieff MW (2007) Sensitivity of cloud-resolving simulations of warm-season convection to cloud microphysics parameterizations. Mon Weather Rev 135(8):2854–2868

    Article  Google Scholar 

  • López-Espinoza ED, Zavala-Hidalgo J, Mahmood R, Gómez-Ramos O (2020) Assessing the impact of land use and land cover data representation on weather forecast quality: a case study in central mexico. Atmosphere 11(11):1242

    Article  Google Scholar 

  • Loukika KN, Keesara VR, Sridhar V (2021) Analysis of land use and land cover using machine learning algorithms on google earth engine for Munneru River Basin India. Sustainability 13(24):13758

    Article  Google Scholar 

  • Love BC (2002) Comparing supervised and unsupervised category learning. Psychon Bull Rev 9(4):829–835

    Article  Google Scholar 

  • Madala S, Satyanarayana ANV, Tyagi B (2013) Performance evaluation of convective parameterization schemes of WRF-ARW model in the simulation of pre-monsoon thunderstorm events over Kharagpur using STORM data sets. Int J Comput Appl 71(15):43–50

    Google Scholar 

  • Mallard MS, Spero TL, Taylor SM (2018) Examining WRF’s sensitivity to contemporary land-use datasets across the contiguous United States using dynamical downscaling. J Appl Meteorol Climatol 57(11):2561–2583

    Article  Google Scholar 

  • Manohar GK, Kesarkar AP (2003) Climatology of thunderstorm activity over the Indian region: a study of east-west contrast. Mausam 54(4):819–828

    Article  Google Scholar 

  • Mooney PA, Mulligan FJ, Bruyère CL, Parker CL, Gill DO (2019) Investigating the performance of coupled WRF-ROMS simulations of Hurricane Irene (2011) in a regional climate modeling framework. Atmos Res 215:57–74

    Article  Google Scholar 

  • Murtaza KO, Romshoo SA (2014) Assessing the impact of spatial resolution on the accuracy of land cover classification. J Himal Ecol Sustain Dev 9:33–45

    Google Scholar 

  • Niyogi D, Osuri KK, Busireddy NKR, Nadimpalli R (2020) Timing of rainfall occurrence altered by urban sprawl. Urban Clim 33:100643

    Article  Google Scholar 

  • Niyogi D, Holt T, Zhong S, Pyle PC, and Basara J (2006) Urban and land surface effects on the 30 July 2003 mesoscale convective system event observed in the southern Great Plains. J Geophys Res: Atmos. 111(D19)

  • Niyogi D, Osuri KK, Subramanian S and Mohanty UC (2016) The role of land surface processes on extreme weather events: Land data assimilation system. In Advanced numerical modeling and data assimilation techniques for tropical cyclone prediction. Springer, Dordrecht. (pp. 247–266)

  • Oke TR (1995). The heat island of the urban boundary layer: characteristics, causes and effects. In Wind climate in cities. Springer, Dordrecht. (pp. 81–107)

  • Orieschnig CA, Belaud G, Venot JP, Massuel S, Ogilvie A (2021) Input imagery, classifiers, and cloud computing: insights from multi-temporal LULC mapping in the Cambodian Mekong Delta. European J Remote Sens 54(1):398–416

    Article  Google Scholar 

  • Pedruzzi R, Andreão WL, Baek BH, Hudke AP, Glotfelty TW, de Freitas ED, de MartinsBowden PintoAlonsoAlmeidaAbuquerque JAJHJAMFTT (2022) Update of land use/land cover and soil texture for Brazil: impact on WRF modeling results over São Paulo. Atmos Environ 268:118760

    Article  Google Scholar 

  • Pielke RA Sr, Pitman A, Niyogi D, Mahmood R, McAlpine C, Hossain F, Goldewijk KK, Nair U, Betts R, Fall S, Reichstein M, de Noblet N (2011) Land use/land cover changes and climate: modeling analysis and observational evidence. Wiley Interdiscip Rev: Clim Change 2(6):828–850

    Google Scholar 

  • Pineda N, Jorba O, Jorge J, Baldasano JM (2004) Using NOAA AVHRR and SPOT VGT data to estimate surface parameters: application to a mesoscale meteorological model. Int J Remote Sens 25(1):129–143

    Article  Google Scholar 

  • Prasad SK, Mohanty UC, Routray A, Osuri KK, Ramakrishna SSVS, Niyogi D (2014) Impact of doppler weather radar data on thunderstorm simulation during STORM pilot phase—2009. Nat Hazards 74(3):1403–1427

    Article  Google Scholar 

  • Priya K, Nadimpalli R, Osuri KK (2021) Do increasing horizontal resolution and downscaling approaches produce a skillful thunderstorm forecast? Nat Hazards 109(2):1655–1674

    Article  Google Scholar 

  • Qian Y, Zhou W, Yan J, Li W, Han L (2015) Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sens 7(1):153–168

    Article  Google Scholar 

  • Quesada B, Arneth A, de Noblet-Ducoudré N (2017) Atmospheric, radiative, and hydrologic effects of future land use and land cover changes: a global and multimodel climate picture. J Geophys Res: Atmos 122(10):5113–5131

    Article  Google Scholar 

  • Rajeevan M, Kesarkar A, Thampi SB, Rao TN, Radhakrishna B, and Rajasekhar M (2010, February). Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India. In Annales Geophysicae (Vol. 28, No. 2, pp. 603–619). Copernicus GmbH

  • Ray K, Kannan BAM, Sharma P, Sen B, Warsi AH (2015) Severe thunderstorm activities over India during SAARC STORM project 2014–15: study based on radar. Vayu Mandal 43(2):30–46

    Google Scholar 

  • Rivera S, Lowry JH, Hernandez AJ, Ramsey RD, Lezama R, Velasquez MA (2012) A comparison between cluster busting technique and a classification tree algorithm of a moderate resolution imaging spectrometer (MODIS) land cover map of Honduras. Geocarto Int 27(1):17–29

    Article  Google Scholar 

  • Rudke AP, Fujita T, de Almeida DS, Eiras MM, Xavier ACF, Abou Rafee SA, Santos EB, de Morais MV, Martins LD, de Souza RV, Souza RA, Martins JA (2019) Land cover data of Upper Parana River Basin, South America, at high spatial resolution. Int J Appl Earth Obs Geoinf 83:101926

    Google Scholar 

  • Santos-Alamillos FJ, Pozo-Vázquez D, Ruiz-Arias JA, Tovar-Pescador J (2015) Influence of land-use misrepresentation on the accuracy of WRF wind estimates: evaluation of GLCC and CORINE land-use maps in southern Spain. Atmos Res 157:17–28

    Article  Google Scholar 

  • Sati AP, Mohan M (2018) The impact of urbanization during half a century on surface meteorology based on WRF model simulations over National Capital Region India. Theor Appl Climatol 134(1):309–323

    Article  Google Scholar 

  • Sati AP, Mohan M (2021) Impact of urban sprawls on thunderstorm episodes: assessment using WRF model over central-national capital region of India. Urban Clim 37:100869

    Article  Google Scholar 

  • Shalev-Shwartz S, and Ben-David S (2014) Understanding machine learning: From theory to algorithms. Cambridge university press

  • Singh KS, Bhaskaran PK (2017) Impact of PBL and convection parameterization schemes for prediction of severe land-falling Bay of Bengal cyclones using WRF-ARW model. J Atmos Solar Terr Phys 165:10–24

    Article  Google Scholar 

  • Sokol NJ, Rohli RV (2018) Land cover, lightning frequency, and turbulent fluxes over Southern Louisiana. Appl Geogr 90:1–8

    Article  Google Scholar 

  • Suwanprasit C, Srichai N (2012) Impacts of spatial resolution on land cover classification. Proc Asia-Pacific Adv Netw 33:39–47

    Article  Google Scholar 

  • Swain D, Roberts GJ, Dash J, Lekshmi K, Vinoj V, Tripathy S (2017) Impact of rapid urbanization on the city of Bhubaneswar, India. Proc Natl Acad Sci, India, Sect A 87(4):845–853

    Article  Google Scholar 

  • Talukdar S, Singha P, Mahato S, Pal S, Liou YA, Rahman A (2020) Land-use land-cover classification by machine learning classifiers for satellite observations—a review. Remote Sens 12(7):1135

    Article  Google Scholar 

  • Thanh Noi P, Kappas M (2018) Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors 18(1):18

    Google Scholar 

  • Umair M, Kim D, Choi M (2019) Impacts of land use/land cover on runoff and energy budgets in an East Asia ecosystem from remotely sensed data in a community land model. Sci Total Environ 684:641–656

    Article  Google Scholar 

  • Vapnik V (1999) The nature of statistical learning theory. Springer science & business media

  • Xie Y, Shi J, Lei Y, Xing J, and Yang A (2014, July). Impacts of land cover change on simulating precipitation in Beijing area of China. In 2014 IEEE Geoscience and Remote Sensing Symposium (pp. 4145–4148). IEEE

  • Zhu Z, Woodcock CE (2012) Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens Environ 118:83–94

    Article  Google Scholar 

Download references

Acknowledgements

The work is part of the THUMP Project (No.MoES/16/09/2018-RDEAS-THUMP-7) and is supported by the Earth System Science Organization, Ministry of Earth Sciences, Govt. of India. The authors also acknowledge the European Center for Medium Range Weather Forecasts (ECMWF), National Aeronautical and Space Administration (NASA), and Iowa state university of Science and Technology for ERA5, GPM, and METAR data sets, respectively, to carry out this study. IMD is acknowledged for making storm reports available. Authors are grateful for the computational capacities of the Google Earth Engine.

Funding

No funding information is available.

Author information

Authors and Affiliations

Authors

Contributions

KP took part in conceptualizations, methodology, data preparation, analysis, original draft preparation, reviewing, and editing. TS involved in conceptualizations, methodology, analysis, reviewing, and editing. KKO involved in conceptualizations, methodology, supervision, analysis, review, & editing.

Corresponding author

Correspondence to Krishna K. Osuri.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing interests for this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priya, K., Sasanka, T. & Osuri, K.K. Land use land cover representation through supervised machine learning methods: sensitivity on simulation of urban thunderstorms in the east coast of India. Nat Hazards 116, 295–317 (2023). https://doi.org/10.1007/s11069-022-05674-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-022-05674-4

Keywords

Navigation