Skip to main content

Advertisement

Log in

A GIS-based approach for tornado risk assessment in Mexico

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Tornadoes are considered the most extreme manifestation of severe weather, and they are classified as a potentially disastrous phenomenon. In Mexico, tornadoes are common, but they have not received particular attention until recent years because of the socioeconomic impacts derived from significant events. Tornadoes are one of the few natural phenomena in Mexico that do not have an associated risk mapping, as is already the case for other meteorological threats. The present investigation aims to fill this gap by introducing a tornado risk assessment in Mexico using a GIS-based approach. To this end, the risk components—hazard, vulnerability, and exposure—are examined. Tornado hazard was calculated by combining historical tornado reports with potentially severe convective environments computed from the ERA5 dataset. Tornado vulnerability was addressed by the construction of socioeconomic indicators and a multivariate statistical method application. The resulting values were used to define a weighted index based on five main driving factors affecting vulnerability. Exposure was determined using population density. Every subsequent index was added at the municipality level and allowed the computation of a Tornado Risk Index. The results show diverse spatial patterns associated with the three risk components and the risk itself. This first attempt to assess the tornado risk in Mexico exposes relevant information about the natural phenomena and the societal components based on vulnerability and exposure effects. The results can be used to support diverse programs related to integrated risk management for tornadoes in Mexico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams DK, Comrie AC (1997) The north American monsoon. Bull Am Meteor Soc 78(10):2197–2214

    Article  Google Scholar 

  • Agee E, Larson J, Childs S, Marmo A (2016) Spatial redistribution of US tornado activity between 1954 and 2013. J Appl Meteorol Climatol 55(8):1681–1697

    Article  Google Scholar 

  • Al-Hemoud A, Al-Dousari A, Misak R, Al-Sudairawi M, Naseeb A, Al-Dashti H, Al-Dousari N (2019) Economic impact and risk assessment of sand and dust storms (SDS) on the oil and gas industry in Kuwait. Sustainability 11(1):200

    Article  Google Scholar 

  • Antonescu B, Schultz DM, Holzer A, Groenemeijer P (2017) Tornadoes in Europe: an underestimated threat. Bull Am Meteor Soc 98(4):713–728

    Article  Google Scholar 

  • Arreguín Cortés F, López Pérez M, Montero Martínez M (2015) Atlas de vulnerabilidad hídrica en México ante el cambio climático: Efectos del cambio climático en el recurso hídrico de México. Instituto Mexicano de Tecnología del Agua

    Google Scholar 

  • Ashley WS, Strader S, Rosencrants T, Krmenec AJ (2014) Spatiotemporal changes in tornado hazard exposure: the case of the expanding bull’s-eye effect in Chicago, Illinois. Weather Climate Soc 6(2):175–193

    Article  Google Scholar 

  • Aven T (2016) Risk assessment and risk management: review of recent advances on their foundation. Eur J Oper Res 253(1):1–13

    Article  Google Scholar 

  • Avila-Ortega DI, Flores-Santana C (2020) An index of municipality-level vulnerability to COVID-19 in Mexico. Terra Digitalis. https://doi.org/10.22201/igg.25940694e.2020.2.73

    Article  Google Scholar 

  • Bai L, Meng Z, Sueki K, Chen G, Zhou R (2020) Climatology of tropical cyclone tornadoes in China from 2006 to 2018. Sci China Earth Sci 63(1):37–51

    Article  Google Scholar 

  • Bankoff G (2004) The historical geography of disaster: ‘vulnerability’ and ‘local knowledge’ in western discourse. Mapping vulnerability: disasters, development and people. Earthscan, London, pp 25–37. https://www.taylorfrancis.com/chapters/edit/10.4324/9781849771924-10/historical-geography-disaster-vulnerabilitylocal-western-discourse-knowledge-greg-bankoff

  • Barrett BS, Farfán LM, Raga GB, Hernández DH (2017) The Unusual Early Morning Tornado in Ciudad Acuña, Coahuila, Mexico, on 25 May 2015. Mon Weather Rev 145(6):2049–2069

    Article  Google Scholar 

  • Bikos D, Finch J, Case JL (2016) The environment associated with significant tornadoes in Bangladesh. Atmos Res 167:183–195

    Article  Google Scholar 

  • Blaikie P, Cannon T, Davis I, Wisner B (2005) At risk: natural hazards, people’s vulnerability and disasters. Routledge

    Book  Google Scholar 

  • Boruff BJ, Easoz JA, Jones SD, Landry HR, Mitchem JD, Cutter SL (2003) Tornado hazards in the United States. Climate Res 24(2):103–117

    Article  Google Scholar 

  • Brázdil R, Chromá K, Púčik T, Černoch Z, Dobrovolnỳ P, Dolák L, Kotyza O, Řezníčková L, Taszarek M (2020) The climatology of significant tornadoes in the Czech Republic. Atmosphere 11(7):689

    Article  Google Scholar 

  • Busso G (2005) Pobreza, exclusión y vulnerabilidad social. Usos, limitaciones y potencialidades para el diseño de políticas de desarrollo y de población, VIII Jornadas Argentinas de Estudios de Población (AEPA). Buenos Aires, Tandil, pp 1–39

    Google Scholar 

  • Carbajal N, León-Cruz JF, Pineda-Martínez LF, Tuxpan-Vargas J, Gaviño-Rodríguez JH (2019) Occurrence of anticyclonic tornadoes in a topographically complex region of Mexico. Adv Meteorol 2019:1–11

    Article  Google Scholar 

  • Cardona OD, Van Aalst MK, Birkmann J, Fordham M, Mc Gregor G, Rosa P, Pulwarty RS, Schipper ELF, Sinh BT, Décamps H (2012) Determinants of risk: Exposure and vulnerability. En Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the intergovernmental panel on climate change. Cambridge University Press, pp 65–108

  • Centro Nacional de Prevención de Desastres (2006). Guía básica para la elaboración de atlas estatales y municipales de peligros y riesgos. Conceptos básicos sobre peligros, riesgos y su representación geográfica. Secretaría de Gobernación México, DF.

  • Centro Nacional de Prevención de Desastres (2007). Grado de Peligro por Tormentas Electricas. https://www.datos.gob.mx/busca/dataset/centro-nacional-de-prevencion-de-desastres/resource/49b24111-2304-42a1-8b94-8d92a1483800?inner_span=True

  • Consejo Nacional de Población (2021). Índice de marginación por entidad federativa y municipio 2020 [Nota técnica]. https://www.gob.mx/cms/uploads/attachment/file/671313/Nota_tecnica_IMEFM_2020.pdf

  • Cutter SL, Boruff BJ, Shirley WL (2003) Social vulnerability to environmental hazards. Soc Sci Q 84(2):242–261

    Article  Google Scholar 

  • Davis SH (2002) Indigenous peoples, poverty and participatory development: the experience of the World Bank in Latin America. En Multiculturalism in Latin America. Springer, pp 227–251

  • de Loyola Hummell BM, Cutter SL, Emrich CT (2016) Social vulnerability to natural hazards in Brazil. Int J of Disaster Risk Sci 7(2):111–122

    Article  Google Scholar 

  • Dixon RW, Moore TW (2012) Tornado vulnerability in Texas. Weather Climate Soc 4(1):59–68

    Article  Google Scholar 

  • Doswell CA III (2003) Societal impacts of severe thunderstorms and tornadoes: lessons learned and implications for Europe. Atmos Res 67:135–152

    Article  Google Scholar 

  • Dotzek N, Kratzsch T, Groenemeijer P (2006) The European Severe Weather Database (ESWD): an inventory of convective high-impact weather events for forecast and warning evaluation, climatology, and risk assessment. WMO/TD No. 1355 WWRP/THORPEX No. 7 1355(7):228–229

    Google Scholar 

  • Edwards R (2012) Tropical cyclone tornadoes: a review of knowledge in research and prediction. Electron J Severe Storms Metereol (EJSSM) 7(6). https://www.spc.noaa.gov/publications/edwards/ejssmtct.pdf

  • Farfán LM, Barrett BS, Raga GB, Delgado JJ (2021) Characteristics of mesoscale convection over northwestern Mexico, the Gulf of California, and Baja California Peninsula. Int J Climatol 41(S1):E1062–E1084

    Article  Google Scholar 

  • Finch ZO, Johnson RH (2010) Observational analysis of an upper-level inverted trough during the 2004 North American Monsoon Experiment. Mon Weather Rev 138(9):3540–3555

    Article  Google Scholar 

  • Foschiatti AMH (2004) Vulnerabilidad global y pobreza. Consideraciones conceptuales. https://ri.conicet.gov.ar/handle/11336/51214

  • Frigerio I, De Amicis M (2016) Mapping social vulnerability to natural hazards in Italy: a suitable tool for risk mitigation strategies. Environ Sci Policy 63:187–196

    Article  Google Scholar 

  • Frigerio I, Ventura S, Strigaro D, Mattavelli M, De Amicis M, Mugnano S, Boffi M (2016) A GIS-based approach to identify the spatial variability of social vulnerability to seismic hazard in Italy. Appl Geogr 74:12–22

    Article  Google Scholar 

  • Garza-Rodriguez J, Ayala-Diaz GA, Coronado-Saucedo GG, Garza-Garza EG, Ovando-Martinez O (2021) Determinants of poverty in Mexico: a quantile regression analysis. Economies 9(2):60

    Article  Google Scholar 

  • Gensini VA, Ashley WS (2011) Climatology of potentially severe convective environments from the North American Regional Reanalysis. E-J Severe Storms Meteorol 6(8):1–40

    Article  Google Scholar 

  • Goliger AM, Milford RV (1998) A review of worldwide occurrence of tornadoes. J Wind Eng Ind Aerodyn 74:111–121

    Article  Google Scholar 

  • González RV (2011) Vulnerabilidad social y su distribución espacial: El caso de las entidades federativas de México, 1990–2010. Paradig Econ 3(2):85–111

    Google Scholar 

  • González Pérez D (2019) Storm clouds, torrential storms and tornadoes: accounts of waterspouts or tornado alleys in Oaxaca (1830–1885). Relac Estudios De Hist y Soc 40(159):113–146

    Google Scholar 

  • Grams JS, Thompson RL, Snively DV, Prentice JA, Hodges GM, Reames LJ (2012) A climatology and comparison of parameters for significant tornado events in the United States. Weather Forecast 27(1):106–123

    Article  Google Scholar 

  • Granados Martínez A (2017) Vulnerabilidad social por género: riesgos potenciales ante el cambio climático en México. Letras Verdes, Revista Latinoam De Estudios Soc 22:274–296

    Google Scholar 

  • Grieser J, Haines P (2020) Tornado risk climatology in Europe. Atmosphere 11(7):768

    Article  Google Scholar 

  • Guillard-Gonçalves C, Cutter SL, Emrich CT, Zêzere JL (2015) Application of Social Vulnerability Index (SoVI) and delineation of natural risk zones in Greater Lisbon Portugal. J Risk Res 18(5):651–674

    Article  Google Scholar 

  • Guo L, Wang K, Bluestein HB (2016) Variability of tornado occurrence over the continental United States since 1950. J Geophys Res Atmos 121(12):6943–6953

    Article  Google Scholar 

  • Hall GH, Patrinos HA (2012) Indigenous peoples, poverty, and development. Cambridge University Press

    Book  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049

    Article  Google Scholar 

  • Hoeppe P (2016) Trends in weather related disasters–Consequences for insurers and society. Weather Climate Extremes 11:70–79

    Article  Google Scholar 

  • Jiménez M, Baeza C, Matías L, Eslava H (2012) Mapas de índices de riesgo a escala municipal por fenómenos hidro-meteorológicos. Sistema Nacional de Protección Civil.

  • Kamranzad F, Memarian H, Zare M (2020) Earthquake risk assessment for Tehran Iran. ISPRS Int J Geo-Inform 9(7):430

    Article  Google Scholar 

  • Koks EE, Jongman B, Husby TG, Botzen WJ (2015) Combining hazard, exposure and social vulnerability to provide lessons for flood risk management. Environ Sci Policy 47:42–52

    Article  Google Scholar 

  • Kron W (2002) Keynote lecture: flood risk= hazard$\times$ exposure$\times$ vulnerability. Flood Defense, 82–97.

  • Kucieńska B, Raga GB, Rodríguez O (2010) Cloud-to-ground lightning over Mexico and adjacent oceanic regions: a preliminary climatology using the WWLLN dataset. Ann Geophys 28(11):2047–2057

    Article  Google Scholar 

  • Lampis A (2013) Vulnerabilidad y adaptación al cambio climático: debates acerca del concepto de vulnerabilidad y su medición. Cuadernos De Geograf Revista Colomb De Geograf 22(2):17–33

    Article  Google Scholar 

  • Lavell A, Oppenheimer M, Diop C, Hess J, Lempert R, Li J, Muir-Wood R, Myeong S, Moser S, Takeuchi K (2012) Climate change: new dimensions in disaster risk, exposure, vulnerability, and resilience. In: Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the intergovernmental panel on climate change. Cambridge University Press, pp 25–64. https://doi.org/10.1017/CBO9781139177245.004

  • Leitão P (2003) Tornadoes in Portugal Atmospheric Research 67:381–390

    Article  Google Scholar 

  • León-Cruz JF, Carbajal N, Pineda-Martínez LF (2017) Meteorological analysis of the tornado in Ciudad Acuña, Coahuila State, Mexico, on May 25, 2015. Nat Hazards 89(1):423–439

    Article  Google Scholar 

  • León-Cruz JF, Carbajal N, Pineda-Martínez LF (2019) The role of complex terrain in the generation of tornadoes in the west of Mexico. Nat Hazards 97(1):335–353

    Article  Google Scholar 

  • León-Cruz JF, Carbajal Henken C, Carbajal N, Fischer J (2021) Spatio-temporal distribution of deep convection observed along the trans-Mexican volcanic belt. Remote Sensing 13(6):1215

    Article  Google Scholar 

  • León-Cruz JF, Pineda-Martínez LF, Carbajal N (2022) Tornado climatology and potentially severe convective environments in Mexico. Climate Res 87:147–165

    Article  Google Scholar 

  • Li F, Chavas DR, Reed KA, Dawson DT II (2020) Climatology of severe local storm environments and synoptic-scale features over North America in ERA5 reanalysis and CAM6 simulation. J Clim 33(19):8339–8365

    Article  Google Scholar 

  • Lupton D (2013) Risk and emotion: towards an alternative theoretical perspective. Health Risk Soc 15(8):634–647

    Article  Google Scholar 

  • Macías Medrano JM (2016) Vulnerabilidad social en la Ciudad de México frente a tornados. Rev Mex Sociol 78(2):257–284

    Google Scholar 

  • Macías Medrano JM, Avendaño García A (2014) Climatología de tornados en México. Invest Geográf 83:74–87

    Google Scholar 

  • Macías Medrano JM (2001) Descubriendo tornados en México: El caso del tornado de Tzintzuntzan. CIESAS.

  • Macías Medrano JM (2019) Tornados, desastres prevenibles en la frontera norte de México: El tornado de Piedras Negras-Rosita Valley, 24 de abril de 2007. Casa Chata.

  • McGlade J, Bankoff G, Abrahams J, Cooper-Knock SJ, Cotecchia F, Desanker P, Erian W, Gencer E, Gibson L, Girgin S (2019) Global assessment report on disaster risk reduction 2019. UN Office for Disaster Risk Reduction.

  • Meyer CL, Brooks HE, Kay MP (2002) A hazard model for tornado occurrence in the United States. In 13th Symposium on Global Change and Climate Variations.

  • Noji EK (2005) Disasters: introduction and state of the art. Epidemiol Rev 27(1):3–8

    Article  Google Scholar 

  • Novo S, Raga GB (2013) The properties of convective storms in central Mexico: a radar and lightning approach. Atmósfera 26(4):461–472

    Article  Google Scholar 

  • Pineda-Martínez LF, León-Cruz JF, Carbajal N (2020) Analysis of severe storms and tornado formation in the northern region of Mexico. Revista bio ciencias. https://doi.org/10.15741/revbio.07.e885

    Article  Google Scholar 

  • Instituto Nacional de Estadística y Geografía (2021). Censo Población y Vivienda 2020. Censos y Conteos de Población y Vivienda. https://www.inegi.org.mx/programas/ccpv/2020/default.html

  • Rodríguez O, Bech J (2021) Tornadic environments in the Iberian Peninsula and the Balearic Islands based on ERA5 reanalysis. Int J Climatol 41:E1959–E1979

    Article  Google Scholar 

  • Romero R, Gayà M, Doswell CA III (2007) European climatology of severe convective storm environmental parameters: a test for significant tornado events. Atmos Res 83(2–4):389–404

    Article  Google Scholar 

  • Rosencrants TD, Ashley WS (2015) Spatiotemporal analysis of tornado exposure in five US metropolitan areas. Nat Hazards 78(1):121–140

    Article  Google Scholar 

  • Sahoo B, Bhaskaran PK (2018) Multi-hazard risk assessment of coastal vulnerability from tropical cyclones–a GIS based approach for the Odisha coast. J Environ Manage 206:1166–1178

    Article  Google Scholar 

  • Servicio Meteorológico Nacional (2020). Comunicado de Prensa No. 368–20. https://smn.conagua.gob.mx/files/pdfs/comunicados-de-prensa/Comunicado368-20.pdf

  • Shahid S, Behrawan H (2008) Drought risk assessment in the western part of Bangladesh. Nat Hazards 46(3):391–413

    Article  Google Scholar 

  • Siagian TH, Purhadi P, Suhartono S, Ritonga H (2014) Social vulnerability to natural hazards in Indonesia: driving factors and policy implications. Nat Hazards 70(2):1603–1617

    Article  Google Scholar 

  • Silva Dias MA (2011) An increase in the number of tornado reports in Brazil. Weather Climate Soc 3(3):209–217

    Article  Google Scholar 

  • Spring ÚO (2012) Vulnerabilidad social en eventos hidrometeorológicos extremos: una comparación entre los huracanes Stan y Wilma en México. Revista Int De Ciencias Soc y Humanidades, SOCIOTAM 12(2):125–146

    Google Scholar 

  • Suárez Lastra M, Valdés González CM, Galindo Pérez MC, Salvador Guzmán LE, Ruiz-Rivera N, Alcántara-Ayala I, López-Cervantes M, Rosales Tapia AR, Lee WH, Benítez-Pérez H, Juárez Gutiérrez MD (2021) Índice de vulnerabilidad ante el COVID-19 en México. Invest Geográf. https://doi.org/10.14350/rig.60140

    Article  Google Scholar 

  • Sutter D, Simmons KM (2010) Tornado fatalities and mobile homes in the United States. Natural Hazards 53(1):125–137. https://doi.org/10.1007/s11069-009-9416-x

    Article  Google Scholar 

  • Taszarek M, Brooks HE, Czernecki B (2017) Sounding-derived parameters associated with convective hazards in Europe. Mon Weather Rev 145(4):1511–1528

    Article  Google Scholar 

  • Taszarek M, Allen JT, Púčik T, Hoogewind KA, Brooks HE (2020) Severe convective storms across Europe and the United States. Part II: ERA5 environments associated with lightning, large hail, severe wind, and tornadoes. J Climate 33(23):10263–10286

    Article  Google Scholar 

  • Valdés-Manzanilla A (2015) Mesoscale convective systems in NW Mexico during the strong ENSO events of 1997–1999. Atmósfera 28(2):143–148

    Article  Google Scholar 

  • Velasco Santos JC, Macías Medrano JM (2018) Estudio de evento de tornado en San Cristóbal de Las Casas, Chiapas, México. Sociedad y Ambiente 18:255–283

    Article  Google Scholar 

  • Weiss J, Zeitler J (2008) Supercells of the Serranías del Burro. In: 24th Conf. on Severe Local Storms.

  • Wisner B, O’Keefe P, Westgate K (1977) Global systems and local disasters: the untapped power of peoples ‘science. Disasters 1(1):47–57

    Article  Google Scholar 

  • Zhou Y, Li N, Wu W, Wu J, Shi P (2014) Local spatial and temporal factors influencing population and societal vulnerability to natural disasters. Risk Anal 34(4):614–639

    Article  Google Scholar 

  • Zúñiga RAA, Villoria AMG (2018) Desastres en México de 1900 a 2016: patrones de ocurrencia, población afectada y daños económicos. Rev Panam Salud Publica 42:e55

    Google Scholar 

Download references

Acknowledgements

Census data were downloaded from the Instituto Nacional de Estadística y Geografía (INEGI) available at https://www.inegi.org.mx/programas/ccpv/2020/default.html/. ERA5 data (temperature, specific and relative humidity, geopotential height, u-wind, and v-wind) were downloaded from the European Centre for Medium-Range Weather Forecasts (ECMWF), Copernicus Climate Change Service (C3S) Climate Data Store (https://cds.climate.copernicus.eu/). We thank the editor and the two anonymous reviewers for providing valuable comments that helped to improve and clarify this manuscript.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

José Francisco León-Cruz contributed to conceptualization, methodology, software, visualization, formal analysis, investigation, writing, and original draft preparation, review, and editing. Rocío Castillo-Aja contributed to conceptualization, methodology, formal analysis, investigation, writing, and original draft preparation, review, and editing.

Corresponding author

Correspondence to José Francisco León-Cruz.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

León-Cruz, J.F., Castillo-Aja, R. A GIS-based approach for tornado risk assessment in Mexico. Nat Hazards 114, 1563–1583 (2022). https://doi.org/10.1007/s11069-022-05438-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-022-05438-0

Keywords

Navigation