Skip to main content

Advertisement

Log in

Same, Same but Different? A Multi-Method Review of the Processes Underlying Executive Control

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

Attention, working memory, and executive control are commonly considered distinct cognitive functions with important reciprocal interactions. Yet, longstanding evidence from lesion studies has demonstrated both overlap and dissociation in their behavioural expression and anatomical underpinnings, suggesting that a lower dimensional framework could be employed to further identify processes supporting goal-directed behaviour. Here, we describe the anatomical and functional correspondence between attention, working memory, and executive control by providing an overview of cognitive models, as well as recent data from lesion studies, invasive and non-invasive multimodal neuroimaging and brain stimulation. We emphasize the benefits of considering converging evidence from multiple methodologies centred on the identification of brain mechanisms supporting goal-driven behaviour. We propose that expanding on this approach should enable the construction of a comprehensive anatomo-functional framework with testable new hypotheses, and aid clinical neuroscience to intervene on impairments of executive functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Alexander, M. P., Gillingham, S., Schweizer, T., & Stuss, D. T. (2012). Cognitive impairments due to focal cerebellar injuries in adults. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 48(8), 980–990.

    Article  PubMed  Google Scholar 

  • Anderson, S. W., Damasio, H., Jones, R. D., & Tranel, D. (1991). Wisconsin Card Sorting Test performance as a measure of frontal lobe damage. Journal of Clinical and Experimental NeuropsycholoGy, 13(6), 909–922.

    Article  CAS  PubMed  Google Scholar 

  • Anticevic, A., Cole, M. W., Murray, J. D., Corlett, P. R., Wang, X.-J., & Krystal, J. H. (2012). The role of default network deactivation in cognition and disease. Trends in Cognitive ScieNcEs, 16(12), 584–592.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnoux, A., Toba, M. N., Duering, M., Diouf, M., Daouk, J., Constans, J. M., & Godefroy, O. (2018). Is VLSM a valid tool for determining the functional anatomy of the brain? Usefulness of additional Bayesian network analysis. Neuropsychologia, 121, 69–78.

    Article  PubMed  Google Scholar 

  • Aron, A. R. (2007). The neural basis of inhibition in cognitive control. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and PsychIaTry, 13(3), 214–228.

    Article  PubMed  Google Scholar 

  • Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J., & Poldrack, R. A. (2007). Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. The Journal of Neuroscience: THe Official Journal of the Society for NeurosCiEnCe, 27(14), 3743–3752.

    Article  CAS  PubMed  Google Scholar 

  • Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6(2), 115–116.

    Article  CAS  PubMed  Google Scholar 

  • Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: one decade on. Trends in Cognitive Sciences, 18(4), 177–185. https://doi.org/10.1016/j.tics.2013.12.003

    Article  PubMed  Google Scholar 

  • Aston-Jones, G., & Cohen, J. D. (2005). Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. The Journal of Comparative Neurology, 493(1), 99–110.

    Article  CAS  PubMed  Google Scholar 

  • Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119–126.

    Article  CAS  PubMed  Google Scholar 

  • Awh, E., Vogel, E. K., & Oh, S.-H. (2006). Interactions between attention and working memory. Neuroscience, 139(1), 201–208.

    Article  CAS  PubMed  Google Scholar 

  • Azouvi, P., Bartolomeo, P., Beis, J.-M., Perennou, D., Pradat-Diehl, P., & Rousseaux, M. (2006). A battery of tests for the quantitative assessment of unilateral neglect. Restorative Neurology and Neuroscience, 24(4–6), 273–285.

    PubMed  Google Scholar 

  • Baddeley, A. (1992). Working memory. Science, 255(5044), 556–559.

    Article  CAS  PubMed  Google Scholar 

  • Baddeley, A. (1996). The fractionation of working memory. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13468–13472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baddeley, A. (2007). Working memory, thought, and action (Vol. 45). OuP Oxford.

  • Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 1–29.

    Article  PubMed  Google Scholar 

  • Baddeley, A., & Hitch, G. (1974). Working Memory. In Psychology of Learning and Motivation (pp. 47–89). https://doi.org/10.1016/s0079-7421(08)60452-1

  • Baddeley, A., & Wilson, B. (1988). Frontal amnesia and the dysexecutive syndrome. Brain and Cognition, 7(2), 212–230.

    Article  CAS  PubMed  Google Scholar 

  • Badre, D., & D’Esposito, M. (2009). Is the rostro-caudal axis of the frontal lobe hierarchical? Nature Reviews. Neuroscience, 10(9), 659–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badre, D., & Nee, D. E. (2018). Frontal cortex and the hierarchical control of behavior. Trends in Cognitive Sciences, 22(2), 170–188.

    Article  PubMed  Google Scholar 

  • Badre, D., & Wagner, A. D. (2004). Selection, Integration, and Conflict monitoring. Neuron, 41(3), 473–487. https://doi.org/10.1016/s0896-6273(03)00851-1

    Article  CAS  PubMed  Google Scholar 

  • Bae, G.-Y., & Luck, S. J. (2018). Dissociable decoding of spatial attention and working memory from EEG oscillations and sustained potentials. The Journal of Neuroscience: The Official Journal of the society for Neuroscience, 38(2), 409–422.

    Article  CAS  PubMed  Google Scholar 

  • Barceló, F., & Knight, R. T. (2002). Both random and perseverative errors underlie WCST deficits in prefrontal patients. Neuropsychologia, 40(3), 349–356.

    Article  PubMed  Google Scholar 

  • Bartolomeo, P., Thiebaut de Schotten, M., & Chica, A. B. (2012). Brain networks of visuospatial attention and their disruption in visual neglect. Frontiers in Human Neuroscience, 6, 110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartolomeo, P., Thiebaut de Schotten, M., & Doricchi, F. (2007). Left unilateral neglect as a disconnection syndrome. Cerebral Cortex, 17(11), 2479–2490.

    Article  PubMed  Google Scholar 

  • Bassett, D. S., Zurn, P., & Gold, J. I. (2018). On the nature and use of models in network neuroscience. NatUre Reviews. Neuroscience, 19(9), 566–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates, E., Wilson, S. M., Saygin, A. P., Dick, F., Sereno, M. I., Knight, R. T., & Dronkers, N. F. (2003). Voxel-based lesion-symptom mapping. Nature Neuroscience, 6(5), 448–450.

    Article  CAS  PubMed  Google Scholar 

  • Bauer, R. H., & Fuster, J. M. (1976). Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. Journal of Comparative and Physiological Psychology, 90(3), 293–302.

    Article  CAS  PubMed  Google Scholar 

  • Benton, A. L., Hamsher, K., & Sivan, A. B. (1994). Multilingual aphasia examination. AJA Associates.

    Google Scholar 

  • Berger, A., & Posner, M. I. (2000). Pathologies of brain attentional networks. Neuroscience & Biobehavioral Reviews, 24(1), 3–5. https://doi.org/10.1016/s0149-7634(99)00046-9

    Article  CAS  Google Scholar 

  • Berlin, H. A., & Rolls, E. T. (2004). Time perception, impulsivity, emotionality, and personality in self-harming borderline personality disorder patients. Journal of Personality Disorders, 18(4), 358–378.

    Article  PubMed  Google Scholar 

  • Bolt, T., Nomi, J. S., Rubinov, M., & Uddin, L. Q. (2017). Correspondence between evoked and intrinsic functional brain network configurations. Human Brain Mapping, 38(4), 1992–2007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonini, F., Burle, B., Liégeois-Chauvel, C., Régis, J., Chauvel, P., & Vidal, F. (2014). Action monitoring and medial frontal cortex: Leading role of supplementary motor area. Science, 343(6173), 888–891.

    Article  CAS  PubMed  Google Scholar 

  • Borkowski, J. G., Benton, A. L., & Spreen, O. (1967). Word fluency and brain damage. Neuropsychologia, 5(2), 135–140.

    Article  Google Scholar 

  • Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652.

    Article  CAS  PubMed  Google Scholar 

  • Botvinick, M. M., Braver, T. S., Yeung, N., Ullsperger, M., Carter, C. S., & Cohen, J. D. (2004a). Conflict monitoring: Computational and empirical studies. Cognitive Neuroscience of Attention, 91–102.

  • Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004b). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8(12), 539–546.

    Article  PubMed  Google Scholar 

  • Bowers, D., & Heilman, K. M. (1980). Pseudoneglect: Effects of hemispace on a tactile line bisection task. Neuropsychologia, 18(4–5), 491–498.

    Article  CAS  PubMed  Google Scholar 

  • Bowling, J. T., Friston, K. J., & Hopfinger, J. B. (2020). Top-down versus bottom-up attention differentially modulate frontal-parietal connectivity. Human Brain Mapping, 41(4), 928–942.

    Article  PubMed  Google Scholar 

  • Braver, T. S., & Cohen, J. D. (2000). On the control of control: The role of dopamine in regulating prefrontal function and working memory. Control of Cognitive Processes: Attention and Performance, XVIII, 713–737.

  • Brovelli, A., Lachaux, J.-P., Kahane, P., & Boussaoud, D. (2005). High gamma frequency oscillatory activity dissociates attention from intention in the human premotor cortex. NeuroImage, 28(1), 154–164.

    Article  PubMed  Google Scholar 

  • Brown, J., & Braver, T. S. (2006). Error and conflict, prediction, and the adaptive regulation of control. In PsycEXTRA Dataset. https://doi.org/10.1037/e527352012-034

    Article  Google Scholar 

  • Brown, J., & Braver, T. S. (2009). Executive function and higher-order cognition: computational models. In Encyclopedia of Neuroscience (pp. 93–98). https://doi.org/10.1016/b978-008045046-9.00415-0

  • Brunoni, A. R., & Vanderhasselt, M.-A. (2014). Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis. Brain and Cognition, 86, 1–9.

    Article  PubMed  Google Scholar 

  • Brydges, C. R., Reid, C. L., Fox, A. M., & Anderson, M. (2012). A unitary executive function predicts intelligence in children. Intelligence, 40(5), 458–469.

    Article  Google Scholar 

  • Budisavljevic, S., Dell’Acqua, F., Zanatto, D., Begliomini, C., Miotto, D., Motta, R., & Castiello, U. (2017). Asymmetry and structure of the fronto-parietal networks underlie visuomotor processing in humans. Cerebral Cortex, 27(2), 1532–1544.

    PubMed  Google Scholar 

  • Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews. Neuroscience, 10(3), 186–198.

    Article  CAS  PubMed  Google Scholar 

  • Burgess, P. W., Dumontheil, I., & Gilbert, S. J. (2007). The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends in Cognitive Sciences, 11(7), 290–298.

    Article  PubMed  Google Scholar 

  • Burgess, P. W., & Wu, H.-C. (2013). Rostral prefrontal cortex (Brodmann Area 10). In Principles of frontal lobe function (pp. 524–544). https://doi.org/10.1093/med/9780199837755.003.0037

  • Buschman, T. J., & Kastner, S. (2015). From behavior to neural dynamics: An integrated theory of attention. Neuron, 88(1), 127–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzsáki, G. (2020). The brain-cognitive behavior problem: A retrospective. ENeuro, 7(4), ENEURO.0069–20.2020.

  • Cahn, B. R., & Polich, J. (2006). Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychological Bulletin, 132(2), 180.

    Article  PubMed  Google Scholar 

  • Callejas, A., Shulman, G. L., & Corbetta, M. (2014). Dorsal and ventral attention systems underlie social and symbolic cueing. Journal of Cognitive Neuroscience, 26(1), 63–80.

    Article  PubMed  Google Scholar 

  • Camille, N., Tsuchida, A., & Fellows, L. K. (2011). Double dissociation of stimulus-value and action-value learning in humans with orbitofrontal or anterior cingulate cortex damage. The Journal of NeuroscienCe: THe Official Journal of the Society for Neuroscience, 31(42), 15048–15052.

    Article  CAS  PubMed  Google Scholar 

  • Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E., Berger, M. S., Barbaro, N. M., & Knight, R. T. (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science, 313(5793), 1626–1628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catani, M. (2007). From hodology to function [Review of From hodology to function]. Brain: A Journal of Neurology, 130(Pt 3), 602–605.

  • Catani, M., & Bambini, V. (2014). A model for social Communication and language evolution and development (SCALED). Current Opinion in Neurobiology, 28, 165–171.

    Article  CAS  PubMed  Google Scholar 

  • Catani, M., Dell’acqua, F., Vergani, F., Malik, F., Hodge, H., Roy, P., Valabregue, R., & Thiebaut de Schotten, M. (2012). Short frontal lobe connections of the human brain. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 48(2), 273–291.

    Article  PubMed  Google Scholar 

  • Catani, M., Robertsson, N., Beyh, A., Huynh, V., de Santiago Requejo, F., Howells, H., Barrett, R. L. C., Aiello, M., Cavaliere, C., Dyrby, T. B., Krug, K., Ptito, M., D’Arceuil, H., Forkel, S. J., & Dell’Acqua, F. (2017). Short parietal lobe connections of the human and monkey brain. Cortex; a JoUrNal Devoted to the Study of the Nervous System and Behavior, 97, 339–357.

    Article  PubMed  Google Scholar 

  • Catani, M., & Thiebaut de Schotten, M. (2008). A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex; a JoUrNal Devoted to the Study of the Nervous System and Behavior, 44(8), 1105–1132.

    Article  PubMed  Google Scholar 

  • Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54(1), 1–22.

    Article  Google Scholar 

  • Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414–421.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chanes, L., Chica, A. B., Quentin, R., & Valero-Cabré, A. (2012). Manipulation of pre-target activity on the right frontal eye field enhances conscious visual perception in humans. PLoS ONE, 7(5), e36232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanes, L., Quentin, R., Tallon-Baudry, C., & Valero-Cabré, A. (2013). Causal frequency-specific contributions of frontal spatiotemporal patterns induced by non-invasive neurostimulation to human visual performance. The Journal of NEuRoscience: THe Official Journal of the Society for Neuroscience, 33(11), 5000–5005.

    Article  CAS  PubMed  Google Scholar 

  • Chatham, C. H., Frank, M. J., & Badre, D. (2014). Corticostriatal output gating during selection from working memory. Neuron, 81(4), 930–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chechlacz, M., Gillebert, C. R., Vangkilde, S. A., Petersen, A., & Humphreys, G. W. (2015). Structural variability within frontoparietal networks and individual differences in attentional functions: An approach using the theory of visual attention. The Journal of NEuroscience: THe Official Journal of the Society for Neuroscience, 35(30), 10647–10658.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Spagna, A., Wu, T., Kim, T. H., Wu, Q., Chen, C., Wu, Y., & Fan, J. (2019). Testing a cognitive control model of human intelligence. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-39685-2

  • Chernoff, B. L., Sims, M. H., Smith, S. O., Pilcher, W. H., & Mahon, B. Z. (2019). Direct electrical stimulation of the left frontal aslant tract disrupts sentence planning without affecting articulation. Cognitive Neuropsychology, 36(3–4), 178–192.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chica, A. B., Bartolomeo, P., & Lupiáñez, J. (2013). Two cognitive and neural systems for endogenous and exogenous spatial attention. Behavioural Brain Research, 237, 107–123.

    Article  PubMed  Google Scholar 

  • Chica, A. B., Bartolomeo, P., & Valero-Cabré, A. (2011). Dorsal and ventral parietal contributions to spatial orienting in the human brain. The JourNal of Neuroscience: THe Official Journal of the Society for Neuroscience, 31(22), 8143–8149.

    Article  CAS  PubMed  Google Scholar 

  • Chica, A. B., Bayle, D. J., Botta, F., Bartolomeo, P., & Paz-Alonso, P. M. (2016). Interactions between phasic alerting and consciousness in the fronto-striatal network. Scientific Reports, 6, 31868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chica, A. B., Valero-Cabré, A., Paz-Alonso, P. M., & Bartolomeo, P. (2014). Causal contributions of the left frontal eye field to conscious perception. Cerebral Cortex, 24(3), 745–753.

    Article  PubMed  Google Scholar 

  • Christoff, K., Ream, J. M., Geddes, L. P. T., & Gabrieli, J. D. E. (2003). Evaluating self-generated information: Anterior prefrontal contributions to human cognition. Behavioral Neuroscience, 117(6), 1161–1168.

    Article  PubMed  Google Scholar 

  • Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73–101.

    Article  PubMed  Google Scholar 

  • Cocchi, L., Zalesky, A., Fornito, A., & Mattingley, J. B. (2013). Dynamic cooperation and competition between brain systems during cognitive control. Trends in Cognitive Sciences, 17, 493–501. https://doi.org/10.1016/j.tics.2013.08.006

    Article  PubMed  Google Scholar 

  • Cohen, M. X., Ridderinkhof, K. R., Haupt, S., Elger, C. E., & Fell, J. (2008). Medial frontal cortex and response conflict: Evidence from human intracranial EEG and medial frontal cortex lesion. Brain Research, 1238, 127–142.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, R. A., Kaplan, R. F., Moser, D. J., Jenkins, M. A., & Wilkinson, H. (1999). Impairments of attention after cingulotomy. Neurology, 53(4), 819–824.

    Article  CAS  PubMed  Google Scholar 

  • Cole, M. W., & Schneider, W. (2007). The cognitive control network: Integrated cortical regions with dissociable functions. NeuroImage, 37(1), 343–360.

    Article  PubMed  Google Scholar 

  • Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S., & Petersen, S. E. (2014). Intrinsic and task-evoked network architectures of the human brain. Neuron, 83(1), 238–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collette, F., & Van der Linden, M. (2002). Brain imaging of the central executive component of working memory. Neuroscience and Biobehavioral Reviews, 26(2), 105–125.

    Article  PubMed  Google Scholar 

  • Collette, F., Van der Linden, M., Laureys, S., Delfiore, G., Degueldre, C., Luxen, A., & Salmon, E. (2005). Exploring the unity and diversity of the neural substrates of executive functioning. Human Brain Mapping, 25(4), 409–423.

    Article  PubMed  PubMed Central  Google Scholar 

  • Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3), 306–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews. Neuroscience, 3(3), 201–215.

    Article  CAS  PubMed  Google Scholar 

  • Cornblatt, B. A., & Keilp, J. G. (1994). Impaired attention, genetics, and the pathophysiology of schizophrenia. Schizophrenia Bulletin, 20(1), 31–46. https://doi.org/10.1093/schbul/20.1.31

    Article  CAS  PubMed  Google Scholar 

  • Coste, C. P., & Kleinschmidt, A. (2016). Cingulo-opercular network activity maintains alertness. NeuroImage, 128, 264–272. https://doi.org/10.1016/j.neuroimage.2016.01.026

    Article  PubMed  Google Scholar 

  • Cowan, N. (1998). Attention and memory: An integrated framework. Oxford University Press.

    Book  Google Scholar 

  • Deary, I. J., & Stough, C. (1996). Intelligence and inspection time: Achievements, prospects, and problems. The American Psychologist, 51(6), 599–608.

    Article  Google Scholar 

  • de Bourbon-Teles, J., Bentley, P., Koshino, S., Shah, K., Dutta, A., Malhotra, P., Egner, T., Husain, M., & Soto, D. (2014). Thalamic control of human attention driven by memory and learning. Current Biology: CB, 24(9), 993–999.

    Article  PubMed  Google Scholar 

  • Delis, D. C., Kaplan, E., & Kramer, J. (2001). Delis-kaplan executive function system: Examiner’s manual. The Psychological Corporation.

    Google Scholar 

  • Demakis, G. J. (2003). A meta-analytic review of the sensitivity of the Wisconsin card sorting test to frontal and lateralized frontal brain damage. Neuropsychology, 17(2), 255–264.

    Article  PubMed  Google Scholar 

  • de Pasquale, F., Della Penna, S., Sporns, O., Romani, G. L., & Corbetta, M. (2016). A dynamic core network and global efficiency in the resting human brain. Cerebral Cortex (New York, N.Y. : 1991), 26(10), 4015–4033. https://doi.org/10.1093/cercor/bhv185

  • D'Esposito M. (2007). From cognitive to neural models of working memory. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 362(1481), 761–772. https://doi.org/10.1098/rstb.2007.2086

  • D’Esposito, M., & Postle, B. R. (1999). The dependence of span and delayed-response performance on prefrontal cortex. Neuropsychologia, 37(11), 1303–1315.

    Article  PubMed  Google Scholar 

  • D’Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 66, 115–142.

    Article  PubMed  Google Scholar 

  • De Witte, L., Brouns, R., Kavadias, D., Engelborghs, S., De Deyn, P. P., & Mariën, P. (2011). Cognitive, affective and behavioural disturbances following vascular thalamic lesions: A review. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 47(3), 273–319.

    Article  PubMed  Google Scholar 

  • Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168.

    Article  PubMed  Google Scholar 

  • Dick, A. S., Garic, D., Graziano, P., & Tremblay, P. (2019). The frontal aslant tract (FAT) and its role in speech, language and executive function. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 111, 148–163.

    Article  PubMed  Google Scholar 

  • Domenech, P., & Koechlin, E. (2015). Executive control and decision-making in the prefrontal cortex. Current Opinion in Behavioral Sciences, 1, 101–106.

    Article  Google Scholar 

  • Donoso, M., Collins, A. G. E., & Koechlin, E. (2014). Human cognition. Foundations of human reasoning in the prefrontal cortex. Science, 344(6191), 1481–1486.

    Article  CAS  PubMed  Google Scholar 

  • Doricchi, F., Thiebaut de Schotten, M., Tomaiuolo, F., & Bartolomeo, P. (2008). White matter (dis)connections and gray matter (dys)functions in visual neglect: Gaining insights into the brain networks of spatial awareness. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 44(8), 983–995.

    Article  PubMed  Google Scholar 

  • Dosenbach, N. U. F., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12(3), 99–105.

    Article  PubMed  PubMed Central  Google Scholar 

  • Douw, L., Wakeman, D. G., Tanaka, N., Liu, H., & Stufflebeam, S. M. (2016). State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility. Neuroscience, 339, 12–21.

    Article  CAS  PubMed  Google Scholar 

  • Dragoy, O., Zyryanov, A., Bronov, O., Gordeyeva, E., Gronskaya, N., Kryuchkova, O., Klyuev, E., Kopachev, D., Medyanik, I., Mishnyakova, L., Pedyash, N., Pronin, I., Reutov, A., Sitnikov, A., Stupina, E., Yashin, K., Zhirnova, V., & Zuev, A. (2020). Functional linguistic specificity of the left frontal aslant tract for spontaneous speech fluency: Evidence from intraoperative language mapping. Brain and Language, 208, 104836.

    Article  PubMed  Google Scholar 

  • Draheim, C., Mashburn, C. A., Martin, J. D., & Engle, R. W. (2019). Reaction time in differential and developmental research: A review and commentary on the problems and alternatives. Psychological Bulletin, 145(5), 508.

    Article  PubMed  Google Scholar 

  • Drewe, E. A. (1974). The effect of type and area of brain lesion on Wisconsin card sorting test performance. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 10(2), 159–170.

    Article  CAS  PubMed  Google Scholar 

  • Dubois, B., Slachevsky, A., Litvan, I., & Pillon, B. (2000). The FAB: A frontal assessment battery at bedside [Review of The FAB: A Frontal Assessment Battery at bedside]. Neurology, 55(11), 1621–1626.

    Article  CAS  PubMed  Google Scholar 

  • du Boisgueheneuc, F., Levy, R., Volle, E., Seassau, M., Duffau, H., Kinkingnehun, S., Samson, Y., Zhang, S., & Dubois, B. (2006). Functions of the left superior frontal gyrus in humans: a lesion study. Brain: A Journal of Neurology, 129(Pt 12), 3315–3328.

  • Duffau, H. (2011). Brain Mapping: From Neural Basis of Cognition to Surgical Applications. Springer Science & Business Media.

    Book  Google Scholar 

  • Duncan, J. (1986). Disorganisation of behaviour after frontal lobe damage. Cognitive Neuropsychology, 3(3), 271–290.

    Article  Google Scholar 

  • Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14(4), 172-179.

    Article  PubMed  Google Scholar 

  • Duncan, J. (2013). The structure of cognition: Attentional episodes in mind and brain. Neuron, 80(1), 35–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenberg, I. W., Bissett, P. G., Zeynep Enkavi, A., Li, J., MacKinnon, D. P., Marsch, L. A., & Poldrack, R. A. (2019). Uncovering the structure of self-regulation through data-driven ontology discovery. Nature Communications, 10(1), 1–13.

    Article  CAS  Google Scholar 

  • Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–149.

    Article  Google Scholar 

  • Ester, E. F., Anderson, D. E., Serences, J. T., & Awh, E. (2013). A neural measure of precision in visual working memory. Journal of Cognitive Neuroscience, 25(5), 754–761.

    Article  PubMed  PubMed Central  Google Scholar 

  • Esterman, M., Liu, G., Okabe, H., Reagan, A., Thai, M., & DeGutis, J. (2015). Frontal eye field involvement in sustaining visual attention: Evidence from transcranial magnetic stimulation. NeuroImage, 111, 542–548.

    Article  PubMed  Google Scholar 

  • Esterman, M., Thai, M., Okabe, H., DeGutis, J., Saad, E., Laganiere, S. E., & Halko, M. A. (2017). Network-targeted cerebellar transcranial magnetic stimulation improves attentional control. NeuroImage, 156, 190–198.

    Article  PubMed  Google Scholar 

  • Exner, C., Weniger, G., & Irle, E. (2004). Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology, 63(11), 2132–2135.

    Article  PubMed  Google Scholar 

  • Fan, J. (2014). An information theory account of cognitive control. Frontiers in Human Neuroscience, 8, 680.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan, J., Flombaum, J. I., McCandliss, B. D., Thomas, K. M., & Posner, M. I. (2003). Cognitive and brain consequences of conflict. NeuroImage, 18(1), 42–57.

    Article  PubMed  Google Scholar 

  • Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005). The activation of attentional networks. NeuroImage, 26(2), 471–479.

    Article  PubMed  Google Scholar 

  • Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14(3), 340–347.

    Article  PubMed  Google Scholar 

  • Favaretto, C., Spadone, S., Sestieri, C., Betti, V., Cenedese, A., Della Penna, S., & Corbetta, M. (2021). Multi-band MEG signatures of BOLD connectivity reorganization during visuospatial attention. NeuroImage, 230, 117781.

    Article  PubMed  Google Scholar 

  • Fellows, L. K., & Farah, M. J. (2005). Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cerebral Cortex, 15(1), 58–63.

    Article  PubMed  Google Scholar 

  • Fernandez-Duque, D., & Posner, M. I. (2001). Brain imaging of attentional networks in normal and pathological states. Journal of Clinical and Experimental NeUroPsychoLoGy, 23(1), 74–93.

    Article  CAS  PubMed  Google Scholar 

  • Fiebelkorn, I. C., & Kastner, S. (2019). A rhythmic theory of attention. Trends in COgnitive Sciences, 23(2), 87–101.

    Article  PubMed  Google Scholar 

  • Fiebelkorn, I. C., & Kastner, S. (2020). Functional specialization in the attention network. Annual Review of Psychology, 71, 221–249.

    Article  PubMed  Google Scholar 

  • Fiebelkorn, I. C., Pinsk, M. A., & Kastner, S. (2018). A Dynamic interplay within the frontoparietal network underlies rhythmic spatial attention. Neuron, 99(4), 842-853.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiebelkorn, I. C., Saalmann, Y. B., & Kastner, S. (2013). Rhythmic sampling within and between objects despite sustained attention at a cued location. Current Biology: CB, 23(24), 2553–2558.

    Article  CAS  PubMed  Google Scholar 

  • Finan, J. L. (1942). Delayed response with pre-delay reënforcement in monkeys after the removal of the frontal lobes. The American Journal of PsychoLogy, 55(2), 202–214.

    Article  Google Scholar 

  • Floden, D., Vallesi, A., & Stuss, D. T. (2011). Task context and frontal lobe activation in the Stroop task. Journal of Cognitive Neuroscience, 23(4), 867–879.

    Article  PubMed  Google Scholar 

  • Forkel, S. J., Friedrich, P., de Schotten, M. T., & Howells, H. (2020). White matter variability, cognition, and disorders: a systematic review. medRxiv. https://www.medrxiv.org/content/10.1101/2020.04.22.20075127v1.abstract

  • Fornia, L., Puglisi, G., Leonetti, A., Bello, L., Berti, A., Cerri, G., & Garbarini, F. (2020). Direct electrical stimulation of the premotor cortex shuts down awareness of voluntary actions. Nature Communications, 11(1), 1–11.

    Article  Google Scholar 

  • Fournier-Vicente, S., Larigauderie, P., & Gaonac’h, D. (2008). More dissociations and interactions within central executive functioning: A comprehensive latent-variable analysis. Acta Psychologica, 129(1), 32–48.

    Article  PubMed  Google Scholar 

  • Fox, M. D. (2018). Mapping symptoms to brain networks with the human connectome. The New England Journal of Medicine, 379(23), 2237–2245.

    Article  CAS  PubMed  Google Scholar 

  • Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences of the United States of America, 103(26), 10046–10051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank, M. J., Loughry, B., & O’Reilly, R. C. (2001). Interactions between frontal cortex and basal ganglia in working memory: A computational model. Cognitive, Affective & Behavioral Neuroscience, 1(2), 137–160.

    Article  CAS  Google Scholar 

  • Fransson, P. (2005). Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis. Human Brain Mapping, 26(1), 15–29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Freedman, M., & Oscar-Berman, M. (1986). Bilateral frontal lobe disease and selective delayed response deficits in humans. Behavioral Neuroscience, 100(3), 337–342.

    Article  CAS  PubMed  Google Scholar 

  • Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: a latent-variable analysis. Journal of Experimental Psychology. General, 133(1), 101–135. https://doi.org/10.1037/0096-3445.133.1.101

    Article  PubMed  Google Scholar 

  • Friedrich, P., Thiebaut de Schotten, M., Forkel, S. J., Stacho, M., & Howells, H. (2020). An ancestral anatomical and spatial bias for visually guided behavior [Review of An ancestral anatomical and spatial bias for visually guided behavior]. Proceedings of the National Academy of Sciences of the United States of America, 117(5), 2251–2252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Froudist-Walsh, S., Karolis, V., Caldinelli, C., Brittain, P. J., Kroll, J., Rodríguez-Toscano, E., Tesse, M., Colquhoun, M., Howes, O., Dell’Acqua, F., Thiebaut de Schotten, M., Murray, R. M., Williams, S. C. R., & Nosarti, C. (2015). Very early brain damage leads to remodeling of the working memory system in adulthood: A combined fMRI/Tractography study. The Journal of Neuroscience: THe Official Journal of the Society for Neuroscience, 35(48), 15787–15799.

    Article  CAS  PubMed  Google Scholar 

  • Funderud, I., Løvstad, M., Lindgren, M., Endestad, T., Due-Tønnessen, P., Meling, T. R., Knight, R. T., & Solbakk, A.-K. (2013). Preparatory attention after lesions to the lateral or orbital prefrontal cortex—an event-related potentials study. Brain Research, 1527, 174–188.

  • Fuster, J. M. (2001). The prefrontal cortex—an update: Review time is of the essence. Neuron, 30, 319–333.

    Article  CAS  PubMed  Google Scholar 

  • Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science, 173(3997), 652–654.

    Article  CAS  PubMed  Google Scholar 

  • Gainotti, G., D’Erme, P., & Bartolomeo, P. (1991). Early orientation of attention toward the half space ipsilateral to the lesion in patients with unilateral brain damage. Journal of Neurology, Neurosurgery, and Psychiatry, 54(12), 1082–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garic, D., Broce, I., Graziano, P., Mattfeld, A., & Dick, A. S. (2019). Laterality of the frontal aslant tract (FAT) explains externalizing behaviors through its association with executive function. Developmental Science, 22(2), e12744.

    Article  PubMed  Google Scholar 

  • Gaspelin, N., & Luck, S. J. (2018). The Role of Inhibition in Avoiding Distraction by Salient Floden, D., Vallesi, A., & Stuss, D. T. (2011). Task context and frontal lobe activation in the Stroop task. Journal of Cognitive Neuroscience, 23(4), 867–879.Stimuli. Trends in Cognitive Sciences, 22(1), 79–92.

  • Gläscher, J., Adolphs, R., Damasio, H., Bechara, A., Rudrauf, D., Calamia, M., Paul, L. K., & Tranel, D. (2012). Lesion mapping of cognitive control and value-based decision making in the prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 109(36), 14681–14686. https://doi.org/10.1073/pnas.1206608109

  • Gläscher, J., Adolphs, R., & Tranel, D. (2019). Model-based lesion mapping of cognitive control using the Wisconsin Card Sorting Test. Nature Communications, 10(1), 20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C. F., Jenkinson, M., Smith, S. M., & Van Essen, D. C. (2016). A multi-modal parcellation of human cerebral cortex. Nature, 536(7615), 171–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godefroy, O., Cabaret, M., Petit-Chenal, V., Pruvo, J. P., & Rousseaux, M. (1999). Control functions of the frontal lobes. Modularity of the central-supervisory system? Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 35(1), 1–20.

  • Godefroy, O., Duhamel, A., Leclerc, X., Saint Michel, T., Hénon, H., & Leys, D. (1998). Brain-behaviour relationships. Some models and related statistical procedures for the study of brain-damaged patients. Brain: A Journal of Neurology, 121(Pt 8), 1545–1556.

  • Godefroy, O., Lhullier, C., & Rousseaux, M. (1994). Reliability of reaction time measurements in brain-damaged patients. Journal of the Neurological Sciences, 126(2), 168–171.

    Article  CAS  PubMed  Google Scholar 

  • Godefroy, O., Martinaud, O., Narme, P., Joseph, P.-A., Mosca, C., Lhommée, E., Meulemans, T., Czernecki, V., Bertola, C., Labauge, P., Verny, M., Bellmann, A., Azouvi, P., Bindschaedler, C., Bretault, E., Boutoleau-Bretonniere, C., Robert, P., Lenoir, H., Krier, M., …, GREFEX study group. (2018). Dysexecutive disorders and their diagnosis: A position paper. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 109, 322–335https://doi.org/10.1016/j.cortex.2018.09.026

  • Godefroy, O., Roussel, M., Despretz, P., Quaglino, V., & Boucart, M. (2010). Age-related slowing: Perceptuomotor, decision, or attention decline? Experimental Aging ResearCh, 36(2), 169–189.

    Article  PubMed  Google Scholar 

  • Godefroy, O., & Stuss, D. T. (2007). Dysexecutive syndromes. In G. O. & B. J. (Eds.), The behavioral and cognitive neurology of stroke. New York: Cambridge University Press.

  • Goldman-Rakic, P. S. (1987). Development of cortical circuitry and cognitive function. Child Development, 58(3), 601–622.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, B., Obrzut, J. E., John, C., Ledakis, G., & Armstrong, C. L. (2004). The impact of frontal and non-frontal brain tumor lesions on Wisconsin Card Sorting Test performance. Brain and CogniTion, 54(2), 110–116.

    Article  PubMed  Google Scholar 

  • Goldstein, K., & Scheerer, M. (1941). Abstract and concrete behavior: An experimental study with special tests. Psychological Monographs, 53(2), 151.

    Article  Google Scholar 

  • Gottwald, B., Wilde, B., Mihajlovic, Z., & Mehdorn, H. M. (2004). Evidence for distinct cognitive deficits after focal cerebellar lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 75(11), 1524–1531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouveia, P. A. R., Brucki, S. M. D., Malheiros, S. M. F., & Bueno, O. F. A. (2007). Disorders in planning and strategy application in frontal lobe lesion patients. Brain and Cognition, 63(3), 240–246.

    Article  PubMed  Google Scholar 

  • Grafman, J. (1989). Plans, actions, and mental states: Managerial knowledge units in the fontal lobes. In E. Perecman (Ed.), Integrating theory and practice in clinical neurpsychology (pp. 93–138). Erlbaum.

    Google Scholar 

  • Grant, D. A., & Berg, E. A. (1948). A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem. Journal of ExpeRiMeNtal Psychology, 38(4), 404–411.

    Article  CAS  PubMed  Google Scholar 

  • Gratton, G., Cooper, P., Fabiani, M., Carter, C. S., & Karayanidis, F. (2018). Dynamics of cognitive control: Theoretical bases, paradigms, and a view for the future. Psychophysiology, 55(3), e13016.

    Article  Google Scholar 

  • Greve, K. W. (2001). The WCST-64: A standardized short-form of the Wisconsin card sorting test. The Clinical NeUropsychologist, 15(2), 228–234.

    Article  CAS  PubMed  Google Scholar 

  • Grosbras, M.-H., & Paus, T. (2003). Transcranial magnetic stimulation of the human frontal eye field facilitates visual awareness. The EuRopean Journal of Neuroscience, 18(11), 3121–3126.

    Article  PubMed  Google Scholar 

  • Halassa, M. M., & Kastner, S. (2017). Thalamic functions in distributed cognitive control. Nature Neuroscience, 20(12), 1669–1679.

    Article  CAS  PubMed  Google Scholar 

  • Han, S. W., Eaton, H. P., & Marois, R. (2019). Functional fractionation of the cingulo-opercular network: Alerting insula and updating cingulate. Cerebral Cortex, 29(6), 2624–2638.

    Article  PubMed  Google Scholar 

  • Han, X., Berg, A. C., Oh, H., Samaras, D., & Leung, H.-C. (2013). Multi-voxel pattern analysis of selective representation of visual working memory in ventral temporal and occipital regions. NeuroImage, 73, 8–15.

    Article  PubMed  Google Scholar 

  • Hartikainen, K. M., & Knight, R. T. (2003). Lateral and orbital prefrontal cortex contributions to attention. In J. Polich (Ed.), Detection of change: Event-related potential and fMRI findings (Vol. 187, pp. 99–116). Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0294-4_6

  • Hartikainen, K. M., Waljas, M., Isoviita, T., Dastidar, P., Liimatainen, S., Solbakk, A.-K., Ogawa, K. H., Soimakallio, S., Ylinen, A., & Ohman, J. (2010). Persistent symptoms in mild to moderate traumatic brain injury associated with executive dysfunction. Journal of Clinical and Experimental Neuropsychology, 32(7), 767–774.

    Article  PubMed  Google Scholar 

  • Haupt, M., Ruiz-Rizzo, A. L., Sorg, C., & Finke, K. (2019). Phasic alerting effects on visual processing speed are associated with intrinsic functional connectivity in the cingulo-opercular network. NeuroImage, 196, 216–226.

    Article  PubMed  Google Scholar 

  • Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. Behavior Research Methods, 50(3), 1166–1186.

    Article  PubMed  Google Scholar 

  • Heilbronner, R. L., Henry, G. K., Buck, P., Adams, R. L., & Fogle, T. (1991). Lateralized brain damage and performance on trail making A and B, digit span forward and backward, and TPT memory and location. Archives of Clinical Neuropsychology: THe Official JournAl of the NationAl ACademy of Neuropsychologists, 6(4), 251–258.

    Article  CAS  PubMed  Google Scholar 

  • Heilman, K. M., & Van Den Abell, T. (1979). Right hemispheric dominance for mediating cerebral activation. Neuropsychologia, 17(3–4), 315–321.

    Article  CAS  PubMed  Google Scholar 

  • Heilman, K. M., & Watson, R. T. (1977). The neglect syndrome—a unilateral defect of the orienting response. In Harnad, Stevan, Doty, R.W., Goldstein, L., Jaynes, J. and Krauthamer, G. (Eds.), Lateralization in the nervous system (pp. 285-302). Academic Press

  • Helfrich, R. F., Fiebelkorn, I. C., Szczepanski, S. M., Lin, J. J., Parvizi, J., Knight, R. T., & Kastner, S. (2018). Neural mechanisms of sustained attention are rhythmic. Neuron, 99(4), 854-865.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helfrich, R. F., & Knight, R. T. (2016). Oscillatory dynamics of prefrontal cognitive control. Trends in CognitiVe Sciences, 20(12), 916–930.

    Article  PubMed  PubMed Central  Google Scholar 

  • Helfrich, R. F., & Knight, R. T. (2019). Chapter 3 - Cognitive neurophysiology of the prefrontal cortex. In M. D’Esposito & J. H. Grafman (Eds.), Handbook of Clinical Neurology (Vol. 163, pp. 35–59). Elsevier.

  • Herbet G, Duffau H. (2019). Awake craniotomy and bedside cognitive mapping in neurosurgery. In C.M. Pearson, E. Ecklund-Johnson, & S.D. Gale (Eds.), Neurosurgical Neuropsychology, chapt. 7 (pp. 113–138). Elsevier https://doi.org/10.1016/b978-0-12-809961-2.00008-4

  • Herbet, G., & Duffau, H. (2020). Revisiting the functional anatomy of the human brain: Toward a meta-networking theory of cerebral functions. Physiological Reviews, 100(3), 1181–1228.

    Article  PubMed  Google Scholar 

  • Hilgetag, C. C., & Goulas, A. (2020). 'Hierarchy' in the organization of brain networks. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 375(1796), 20190319. https://doi.org/10.1098/rstb.2019.0319

  • Hoerold, D., Pender, N. P., & Robertson, I. H. (2013). Metacognitive and online error awareness deficits after prefrontal cortex lesions. Neuropsychologia, 51(3), 385–391.

    Article  PubMed  Google Scholar 

  • Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679–709.

    Article  PubMed  Google Scholar 

  • Howard, M. W., Rizzuto, D. S., Caplan, J. B., Madsen, J. R., Lisman, J., Aschenbrenner-Scheibe, R., Schulze-Bonhage, A., & Kahana, M. J. (2003). Gamma oscillations correlate with working memory load in humans. Cerebral Cortex, 13(12), 1369–1374.

    Article  PubMed  Google Scholar 

  • Howells, H., Puglisi, G., Leonetti, A., Vigano, L., Fornia, L., Simone, L., Forkel, S. J., Rossi, M., Riva, M., Cerri, G., & Bello, L. (2020). The role of left fronto-parietal tracts in hand selection: Evidence from neurosurgery. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 128, 297–311.

    Article  PubMed  Google Scholar 

  • Howells, H., Thiebaut de Schotten, M., Dell’Acqua, F., Beyh, A., Zappalà, G., Leslie, A., Simmons, A., Murphy, D. G., & Catani, M. (2018). Frontoparietal tracts linked to lateralized hand preference and manual specialization. Cerebral Cortex, 28(7), 2482–2494.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hung, J., Driver, J., & Walsh, V. (2011). Visual selection and the human frontal eye fields: Effects of frontal transcranial magnetic stimulation on partial report analyzed by Bundesen’s theory of visual attention. The JouRnal of Neuroscience: THe Official Journal of the Society for Neuroscience, 31(44), 15904–15913.

    Article  CAS  PubMed  Google Scholar 

  • Husain, M. (2019). Visual attention: What inattention reveals about the brain [review of visual attention: What inattention reveals about the brain]. Current Biology: CB, 29(7), R262–R264.

    Article  CAS  PubMed  Google Scholar 

  • Husain, M., & Kennard, C. (1996). Visual neglect associated with frontal lobe infarction. Journal of Neurology, 243(9), 652–657.

    Article  CAS  PubMed  Google Scholar 

  • Husain, M., Shapiro, K., Martin, J., & Kennard, C. (1997). Abnormal temporal dynamics of visual attention in spatial neglect patients. Nature, 385(6612), 154–156.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, K., Bertolero, M. A., Liu, W. B., & D’Esposito, M. (2017). The human thalamus is an integrative hub for functional brain networks. The Journal of Neuroscience: THe Official Journal of the Society for Neuroscience, 37(23), 5594–5607.

    Article  CAS  PubMed  Google Scholar 

  • Ivanova, M. V., Herron, T. J., Dronkers, N. F., & Baldo, J. V. (2020). An empirical comparison of univariate versus multivariate methods for the analysis of brain-behavior mapping. In bioRxiv (p. 2020.04.13.039958). https://doi.org/10.1101/2020.04.13.039958

  • Jacobsen, C. F. (1935). Functions of frontal association area in primates. Archives of NeurolOgy & Psychiatry, 33, 558–569.

    Article  Google Scholar 

  • Jacobsen, C. F. (1936). Studies of cerebral function in primates. I. The functions of the frontal association areas in monkeys. Comparative Psychology Monographs, 13(3), 1–60.

    Google Scholar 

  • James, W. (1907). Psychology. Holt, Rinehart & Winston, New York.https://doi.org/10.5962/bhl.title.47583

  • Jensen, O., Kaiser, J., & Lachaux, J.-P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30(7), 317–324.

    Article  CAS  PubMed  Google Scholar 

  • Jha, A., Teotonio, R., Smith, A.-L., Bomanji, J., Dickson, J., Diehl, B., Duncan, J. S., & Nachev, P. (2020). Metabolic lesion-deficit mapping of human cognition. Brain: A Journal of Neurology, 143(3), 877–890.

  • Johnson, E. L., Dewar, C. D., Solbakk, A.-K., Endestad, T., Meling, T. R., & Knight, R. T. (2017). Bidirectional frontoparietal oscillatory systems support working memory. Current BIoLoGy: CB, 27(12), 1829-1835.e4.

    Article  CAS  PubMed  Google Scholar 

  • Jonikaitis, D., & Moore, T. (2019). The interdependence of attention, working memory and gaze control: Behavior and neural circuitry. Current Opinion in Psychology, 29, 126–134.

    Article  PubMed  Google Scholar 

  • Jung, J., Hudry, J., Ryvlin, P., Royet, J.-P., Bertrand, O., & Lachaux, J.-P. (2006). Functional significance of olfactory-induced oscillations in the human amygdala. Cerebral Cortex, 16(1), 1–8.

    Article  PubMed  Google Scholar 

  • Kaiser, J., Ripper, B., Birbaumer, N., & Lutzenberger, W. (2003). Dynamics of gamma-band activity in human magnetoencephalogram during auditory pattern working memory. NeuroImage, 20(2), 816–827.

    Article  PubMed  Google Scholar 

  • Karnath, H.-O. (2015). Spatial attention systems in spatial neglect. Neuropsychologia, 75, 61–73.

    Article  PubMed  Google Scholar 

  • Karolis, V. R., Corbetta, M., & Thiebaut de Schotten, M. (2019). The architecture of functional lateralisation and its relationship to callosal connectivity in the human brain. Nature Communications, 10(1), 1417.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karr, J. E., Areshenkoff, C. N., Rast, P., Hofer, S. M., Iverson, G. L., & Garcia-Barrera, M. A. (2018). The unity and diversity of executive functions: A systematic review and re-analysis of latent variable studies. Psychological Bulletin, 144(11), 1147.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kincade, J. M., Abrams, R. A., Astafiev, S. V., Shulman, G. L., & Corbetta, M. (2005). An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. The Journal of Neuroscience: THe Official Journal of the Society for Neuroscience, 25(18), 4593–4604.

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita, M., de Champfleur, N. M., Deverdun, J., Moritz-Gasser, S., Herbet, G., & Duffau, H. (2015). Role of fronto-striatal tract and frontal aslant tract in movement and speech: An axonal mapping study. Brain Structure & Function, 220(6), 3399–3412.

    Article  Google Scholar 

  • Kinoshita, M., Nakajima, R., Shinohara, H., Miyashita, K., Tanaka, S., Okita, H., Nakada, M., & Hayashi, Y. (2016). Chronic spatial working memory deficit associated with the superior longitudinal fasciculus: A study using voxel-based lesion-symptom mapping and intraoperative direct stimulation in right prefrontal glioma surgery. Journal of Neurosurgery, 125(4), 1024–1032.

    Article  PubMed  Google Scholar 

  • Knight, R. T. (1991). Evoked potential studies of attention capacity in human frontal lobe lesions. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.), Frontal lobe function and dysfunction (pp. 139–153). Oxford University Press.

  • Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302(5648), 1181–1185.

    Article  CAS  PubMed  Google Scholar 

  • Koga, S., Rothermel, R., Juhász, C., Nagasawa, T., Sood, S., & Asano, E. (2011). Electrocorticographic correlates of cognitive control in a Stroop task-intracranial recording in epileptic patients. Human Brain Mapping, 32(10), 1580–1591.

    Article  PubMed  Google Scholar 

  • Kriegeskorte, N., & Douglas, P. K. (2018). Cognitive computational neuroscience. Nature Neuroscience, 21(9), 1148–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurzban, R., Duckworth, A., Kable, J. W., & Myers, J. (2013). An opportunity cost model of subjective effort and task performance. The Behavioral and Brain Sciences, 36(6), 661–679.

    Article  PubMed  Google Scholar 

  • Landau, A. N., & Fries, P. (2012). Attention samples stimuli rhythmically. Current Biology: CB, 22(11), 1000–1004.

    Article  CAS  PubMed  Google Scholar 

  • Landau, A. N., Schreyer, H. M., van Pelt, S., & Fries, P. (2015). Distributed attention is implemented through theta-rhythmic gamma modulation. Current Biology: CB, 25(17), 2332–2337.

    Article  CAS  PubMed  Google Scholar 

  • Lara, A. H., & Wallis, J. D. (2015). The role of prefrontal cortex in working memory: A mini review. Frontiers in Systems Neuroscience, 9, 173.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawes, I. N. C., Barrick, T. R., Murugam, V., Spierings, N., Evans, D. R., Song, M., & Clark, C. A. (2008). Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. NeuroImage, 39(1), 62–79.

    Article  PubMed  Google Scholar 

  • Lawrence, N. S., Ross, T. J., Hoffmann, R., Garavan, H., & Stein, E. A. (2003). Multiple neuronal networks mediate sustained attention. Journal of Cognitive Neuroscience, 15(7), 1028–1038.

    Article  PubMed  Google Scholar 

  • Lee, S.-H., Kravitz, D. J., & Baker, C. I. (2013). Goal-dependent dissociation of visual and prefrontal cortices during working memory. Nature Neuroscience, 16(8), 997–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lega, C., Ferrante, O., Marini, F., Santandrea, E., Cattaneo, L., & Chelazzi, L. (2019). Probing the neural mechanisms for distractor filtering and their history-contingent modulation by means of TMS. The JournAl of Neuroscience: THe Official Journal of the Society for Neuroscience, 39(38), 7591–7603.

    Article  CAS  PubMed  Google Scholar 

  • Leimkuhler, M. E., & Mesulam, M. M. (1985). Reversible go-no go deficits in a case of frontal lobe tumor. Annals of Neurology, 18(5), 617–619.

    Article  CAS  PubMed  Google Scholar 

  • Levine, B., Dawson, D., Boutet, I., Schwartz, M. L., & Stuss, D. T. (2000). Assessment of strategic self-regulation in traumatic brain injury: Its relationship to injury severity and psychosocial outcome. Neuropsychology, 14(4), 491–500.

    Article  CAS  PubMed  Google Scholar 

  • Lezak, M. D. (1982). The problem of assessing executive functions. International Journal of Psychology, 17(1-4), 281-297.

    Article  Google Scholar 

  • Liu, J., Bayle, D. J., Spagna, A., Sitt, J. D., Bourgeois, A., Lehongre, K., Fernandez-Vidal, S., Navarro, V., Adam, C., Lambrecq, V., Seidel Malkinson, T. & Bartolomeo, P. (2022). The interplay of attention and conscious perception: evidence from human intracerebral recordings and computational modeling. bioRxiv.

  • Logie R. H. (2016). Retiring the central executive. Quarterly Journal of Experimental Psychology (2006), 69(10), 2093–2109. https://doi.org/10.1080/17470218.2015.1136657

  • Luce, R. D. (1986). Response Times: Their Role in Inferring Elementary Mental Organization (R. D. Luce (ed.)). OUP New York.

  • Luck, D., Danion, J. M., Marrer, C., Pham, B. T., Gounot, D., & Foucher, J. (2010). The right parahippocampal gyrus contributes to the formation and maintenance of bound information in working memory. Brain and Cognition, 72(2), 255–263. https://doi.org/10.1016/j.bandc.2009.09.009

    Article  PubMed  Google Scholar 

  • Lundqvist, M., Herman, P., & Miller, E. K. (2018). Working memory: Delay activity, Yes! Persistent activity? Maybe not. The Journal of Neuroscience: THe Official Journal of the Society for NeurosCience, 38(32), 7013–7019.

    Article  CAS  PubMed  Google Scholar 

  • Lunven, M., Thiebaut De Schotten, M., Bourlon, C., Duret, C., Migliaccio, R., Rode, G., & Bartolomeo, P. (2015). White matter lesional predictors of chronic visual neglect: a longitudinal study. Brain: A Journal of Neurology, 138(Pt 3), 746–760.

  • Luria, A. R. (1966). Higher cortical functions in man. Springer.

    Google Scholar 

  • Luria, A. R. (1973). The working brain: An introduction to neuropsychology. Basic Books.

    Google Scholar 

  • Lutzenberger, W., Ripper, B., Busse, L., Birbaumer, N., & Kaiser, J. (2002). Dynamics of gamma-band activity during an audiospatial working memory task in humans. The Journal of Neuroscience: THe Official Journal of the Society for Neuroscience, 22(13), 5630–5638.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, C. J., Breeden, A. L., Gordon, E. M., Cherry, J. B. C., Turkeltaub, P. E., & Vaidya, C. J. (2019). Precision inhibitory stimulation of individual-specific cortical hubs disrupts information processing in humans. Cerebral Cortex, 29(9), 3912–3921.

    Article  PubMed  Google Scholar 

  • Mackie, M. A., & Fan, J. (2017). Functional neuroimaging of deficits in cognitive control. In E. Goldberg (Ed.), Executive functions in health and disease (pp. 249-300). Academic Press https://doi.org/10.1016/b978-0-12-803676-1.00011-8

    Chapter  Google Scholar 

  • MacPherson, S. E., & Della Sala, S. (Eds.). (2015). Handbook of Frontal Lobe Assessment. OUP.

  • Mah, Y.-H., Husain, M., Rees, G., & Nachev, P. (2014). Human brain lesion-deficit inference remapped. Brain: A Journal of Neurology, 137(Pt 9), 2522–2531.

  • Mainy, N., Kahane, P., Minotti, L., Hoffmann, D., Bertrand, O., & Lachaux, J.-P. (2007). Neural correlates of consolidation in working memory. Human Brain Mapping, 28(3), 183–193.

    Article  PubMed  Google Scholar 

  • Malhotra, P., Coulthard, E. J., & Husain, M. (2009). Role of right posterior parietal cortex in maintaining attention to spatial locations over time. Brain: A Journal of Neurology, 132(Pt 3), 645–660.

  • Malhotra, P., Jäger, H. R., Parton, A., Greenwood, R., Playford, E. D., Brown, M. M., Driver, J., & Husain, M. (2005). Spatial working memory capacity in unilateral neglect. Brain: A Journal of Neurology, 128(Pt 2), 424–435.

  • Mandonnet, E., Cerliani, L., Siuda-Krzywicka, K., Poisson, I., Zhi, N., Volle, E., & de Schotten, M. T. (2017). A network-level approach of cognitive flexibility impairment after surgery of a right temporo-parietal glioma. Neuro-Chirurgie, 63(4), 308–313.

    Article  CAS  PubMed  Google Scholar 

  • Martín-Signes, M., Paz-Alonso, P. M., & Chica, A. B. (2019). Connectivity of frontoparietal regions reveals executive attention and consciousness interactions. Cerebral Cortex, 29(11), 4539–4550.

    Article  PubMed  Google Scholar 

  • Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering minds: The default network and stimulus-independent thought. Science, 315(5810), 393–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayr, U., & Awh, E. (2009). The elusive link between conflict and conflict adaptation. Psychological Research Psychologische Forschung, 73(6), 794–802.

    Article  PubMed  Google Scholar 

  • Menon, V., & D’Esposito, M. (2022). The role of PFC networks in cognitive control and executive function. Neuropsychopharmacology, 47(1), 90–103.

    Article  PubMed  Google Scholar 

  • Meltzer, J. A., Zaveri, H. P., Goncharova, I. I., Distasio, M. M., Papademetris, X., Spencer, S. S., Spencer, D. D., & Constable, R. T. (2008). Effects of working memory load on oscillatory power in human intracranial EEG. Cerebral Cortex, 18(8), 1843–1855.

    Article  PubMed  Google Scholar 

  • Mesulam, M. M. (1985). Principles of Behavioral Neurology. Philadelphia (PA): F.A. Davis.https://ci.nii.ac.jp/naid/10014652106/

    Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An Integrative Theory of Prefrontal Cortex Function. Annual Review of Neuroscience, 24(1), 167–202. https://doi.org/10.1146/annurev.neuro.24.1.167

    Article  CAS  PubMed  Google Scholar 

  • Miller, E. K., Lundqvist, M., & Bastos, A. M. (2018). Working memory 2.0. Neuron, 100(2), 463–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirsky, A. F., Anthony, B. J., Duncan, C. C., Ahearn, M. B., & Kellam, S. G. (1991). Analysis of the elements of attention: A neuropsychological approach. Neuropsychology RevIew, 2(2), 109–145.

    Article  CAS  PubMed  Google Scholar 

  • Mishkin, M. (1957). Effects of small frontal lesions on delayed alternation in monkeys. Journal of Neurophysiology, 20(6), 615–622.

    Article  CAS  PubMed  Google Scholar 

  • Mishkin, M., & Delacour, J. (1975). An analysis of short-term visual memory in the monkey. Journal of Experimental Psychology. Animal Behavior Processes, 1(4), 326–334.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, A. S. (2015). The mediodorsal thalamus as a higher order thalamic relay nucleus important for learning and decision-making. Neuroscience and Biobehavioral Reviews, 54, 76–88.

    Article  PubMed  Google Scholar 

  • Mizuhara, H., & Yamaguchi, Y. (2007). Human cortical circuits for central executive function emerge by theta phase synchronization. NeuroImage, 36(1), 232–244.

    Article  PubMed  Google Scholar 

  • Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological ScieNce, 21(1), 8–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100.

    Article  CAS  PubMed  Google Scholar 

  • Montemurro, N., Herbet, G., & Duffau, H. (2016). Right Cortical and axonal structures eliciting ocular deviation during electrical stimulation mapping in awake patients. Brain Topography, 29(4), 561–571.

    Article  PubMed  Google Scholar 

  • Moreh, E., Malkinson, T. S., Zohary, E., & Soroker, N. (2014). Visual memory in unilateral spatial neglect: Immediate recall versus delayed recognition. Journal of Cognitive Neuroscience, 26(9), 2155–2170.

    Article  PubMed  Google Scholar 

  • Motomura, K., Chalise, L., Ohka, F., Aoki, K., Tanahashi, K., Hirano, M., Nishikawa, T., Yamaguchi, J., Shimizu, H., Wakabayashi, T., & Natsume, A. (2019). Neurocognitive and functional outcomes in patients with diffuse frontal lower-grade gliomas undergoing intraoperative awake brain mapping. Journal of Neurosurgery, 132(6), 1683–1691. https://doi.org/10.3171/2019.3.JNS19211

    Article  PubMed  Google Scholar 

  • Mottaghy, F. M. (2006). Interfering with working memory in humans. Neuroscience, 139(1), 85–90.

    Article  CAS  PubMed  Google Scholar 

  • Muir, R. T., Lam, B., Honjo, K., Harry, R. D., McNeely, A. A., Gao, F.-Q., Ramirez, J., Scott, C. J. M., Ganda, A., Zhao, J., Zhou, X. J., Graham, S. J., Rangwala, N., Gibson, E., Lobaugh, N. J., Kiss, A., Stuss, D. T., Nyenhuis, D. L., Lee, B.-C., …, Black, S. E. (2015). Trail making test elucidates neural substrates of specific poststroke executive dysfunctions. Stroke; a Journal of Cerebral Circulation, 46(10), 2755–2761.

  • Mukamel, R., & Fried, I. (2012). Human intracranial recordings and cognitive neuroscience. Annual Review of Psychology, 63, 511–537.

    Article  PubMed  Google Scholar 

  • Müller, N. G., Machado, L., & Knight, R. T. (2002). Contributions of subregions of the prefrontal cortex to working memory: Evidence from brain lesions in humans. Journal of Cognitive Neuroscience, 14(5), 673–686.

    Article  PubMed  Google Scholar 

  • Murd, C., Moisa, M., Grueschow, M., Polania, R., & Ruff, C. C. (2020). Causal contributions of human frontal eye fields to distinct aspects of decision formation. Scientific Reports, 10(1), 7317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima, R., Kinoshita, M., Miyashita, K., Okita, H., Genda, R., Yahata, T., Hayashi, Y., & Nakada, M. (2017). Damage of the right dorsal superior longitudinal fascicle by awake surgery for glioma causes persistent visuospatial dysfunction. Scientific Reports, 7(1), 17158.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nee, D. E., & D'Esposito, M. (2016). The hierarchical organization of the lateral prefrontal cortex. eLife, 5, e12112. https://doi.org/10.7554/eLife.12112

  • Nee, D. E., & D'Esposito, M. (2017). Causal evidence for lateral prefrontal cortex dynamics supporting cognitive control. eLife, 6, e28040. https://doi.org/10.7554/eLife.28040

  • Nelissen, N., Stokes, M., Nobre, A. C., & Rushworth, M. F. S. (2013). Frontal and parietal cortical interactions with distributed visual representations during selective attention and action selection. The Journal of Neuroscience: THe Official Journal of the Society for Neuroscience, 33(42), 16443–16458.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, H. E. (1976). A modified card sorting test sensitive to frontal lobe defects. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 12(4), 313–324.

    Article  CAS  PubMed  Google Scholar 

  • Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. CoGnitive, Affective & Behavioral Neuroscience, 12(2), 241–268.

    Article  Google Scholar 

  • Noonan, M. P., Chau, B. K. H., Rushworth, M. F. S., & Fellows, L. K. (2017). Contrasting effects of medial and lateral orbitofrontal cortex lesions on credit assignment and decision-making in humans. The Journal of Neuroscience: THe Official Journal of the SocieTy for Neuroscience, 37(29), 7023–7035.

    Article  CAS  PubMed  Google Scholar 

  • Norman, D. A., & Shallice, T. (1980). Attention to action: Willed and automatic control of behavior. Center for Human Information Processing (Tech. Rep. No. 99). (Reprinted in revised form. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.), [1986] Consciousness and self-regulation [Vol. 4]. New York: Plenum Press.)

  • Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behaviour. In R. J. Davidson, G. E. Shwartz, & D. Shapiro (Eds.), Consciousness and self-regulation: Advances in research and theory (pp. 1–18). Plenum.

    Google Scholar 

  • Norman, D. A., & Shallice, T. (2000). Attention to action: Willed and automatic control of behaviour. In Cognitive neuroscience: A reader (Vol. 1). Blackwell.

  • Oberauer, K. (2002). Access to information in working memory: exploring the focus of attention. Journal of Experimental Psychology. Learning, Memory, and Cognition, 28(3), 411–421.

    Article  PubMed  Google Scholar 

  • Oberauer, K. (2009). Design for a working memory. Psychology of Learning and Motivation, 51, 45–100.

    Article  Google Scholar 

  • Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9(5), 242–249. https://doi.org/10.1016/j.tics.2005.03.010

    Article  PubMed  Google Scholar 

  • Ochsner, K. N., Kosslyn, S. M., Cosgrove, G. R., Cassem, E. H., Price, B. H., Nierenberg, A. A., & Rauch, S. L. (2001). Deficits in visual cognition and attention following bilateral anterior cingulotomy. Neuropsychologia, 39(3), 219–230.

    Article  CAS  PubMed  Google Scholar 

  • Ojemann, G., Blick, K. I., & Ward, A. A. (1971). Improvement and disturbance of short-term verbal memory with human ventrolateral thalamic stimulation. Brain, 94(2), 225–240.

    Article  CAS  PubMed  Google Scholar 

  • Ojemann, G., & Fedio, P. (1968). Effect of stimulation of the human thalamus and parietal and temporal white matter on short-term memory. Journal of Neurosurgery, 29(1), 51–59.

    Article  CAS  PubMed  Google Scholar 

  • Olk, B., Peschke, C., & Hilgetag, C. C. (2015). Attention and control of manual responses in cognitive conflict: Findings from TMS perturbation studies. Neuropsychologia, 74, 7–20.

    Article  PubMed  Google Scholar 

  • Onton, J., Delorme, A., & Makeig, S. (2005). Frontal midline EEG dynamics during working memory. NeuroImage, 27(2), 341–356.

    Article  PubMed  Google Scholar 

  • Ossandón, T., Vidal, J. R., Ciumas, C., Jerbi, K., Hamamé, C. M., Dalal, S. S., Bertrand, O., Minotti, L., Kahane, P., & Lachaux, J.-P. (2012). Efficient “pop-out” visual search elicits sustained broadband γ activity in the dorsal attention network. The Journal of Neuroscience: THe Official Journal of the Society for Neuroscience, 32(10), 3414–3421.

    Article  PubMed  Google Scholar 

  • Ott, T., & Nieder, A. (2019). Dopamine and cognitive control in prefrontal cortex. Trends in Cognitive Sciences, 23(3), 213–234.

    Article  PubMed  Google Scholar 

  • Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pacella, V., Foulon, C., Jenkinson, P. M., Scandola, M., Bertagnoli, S., Avesani, R., ..., & de Schotten, M. T. (2019). Anosognosia for hemiplegia as a tripartite disconnection syndrome. Elife, 8, e46075.

  • Paelecke-Habermann, Y., Pohl, J., & Leplow, B. (2005). Attention and executive functions in remitted major depression patients. Journal of Affective Disorders, 89(1–3), 125–135. https://doi.org/10.1016/j.jad.2005.09.006

    Article  PubMed  Google Scholar 

  • Panichello, M. F., & Buschman, T. J. (2021). Shared mechanisms underlie the control of working memory and attention. Nature, 592(7855), 601–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papagno, C., Comi, A., Riva, M., Bizzi, A., Vernice, M., Casarotti, A., Fava, E., & Bello, L. (2017). Mapping the brain network of the phonological loop. Human Brain Mapping, 38(6), 3011–3024.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parkin, A. J., Bindschaedler, C., Harsent, L., & Metzler, C. (1996). Pathological false alarm rates following damage to the left frontal cortex. Brain and Cognition, 32(1), 14–27.

    Article  CAS  PubMed  Google Scholar 

  • Parvizi, J., & Kastner, S. (2018). Promises and limitations of human intracranial electroencephalography. NatUre NEuroscience, 21(4), 474–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel, G. H., Yang, D., Jamerson, E. C., Snyder, L. H., Corbetta, M., & Ferrera, V. P. (2015). Functional evolution of new and expanded attention networks in humans. Proceedings of the National Academy of Sciences of the United States of America, 112(30), 9454–9459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peräkylä, J., Sun, L., Lehtimäki, K., Peltola, J., Öhman, J., Möttönen, T., Ogawa, K. H., & Hartikainen, K. M. (2017). Causal Evidence from Humans for the Role of Mediodorsal Nucleus of the Thalamus in Working Memory. Journal of Cognitive Neuroscience, 29(12), 2090–2102.

    Article  PubMed  Google Scholar 

  • Pergola, G., Danet, L., Pitel, A.-L., Carlesimo, G. A., Segobin, S., Pariente, J., Suchan, B., Mitchell, A. S., & Barbeau, E. J. (2018). The regulatory role of the human mediodorsal thalamus. Trends in Cognitive Sciences, 22(11), 1011–1025.

    Article  PubMed  PubMed Central  Google Scholar 

  • Périn, B., Godefroy, O., Fall, S., & de Marco, G. (2010). Alertness in young healthy subjects: An fMRI study of brain region interactivity enhanced by a warning signal. Brain and Cognition, 72(2), 271–281.

    Article  PubMed  Google Scholar 

  • Perret, E. (1974). The left frontal lobe of man and the suppression of habitual responses in verbal categorical behaviour. Neuropsychologia, 12(3), 323–330.

    Article  CAS  PubMed  Google Scholar 

  • Pessoa, L. (2014). Understanding brain networks and brain organization. Physics of Life Reviews, 11(3), 400–435.

    Article  PubMed  PubMed Central  Google Scholar 

  • Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrides, M., & Pandya, D. N. (1984). Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. The Journal of Comparative Neurology, 228(1), 105–116.

    Article  CAS  PubMed  Google Scholar 

  • Pierrot-Deseilligny, C., Milea, D., & Müri, R. M. (2004). Eye movement control by the cerebral cortex. Current Opinion in Neurology, 17(1), 17–25.

    Article  PubMed  Google Scholar 

  • Plaza, M., Gatignol, P., Cohen, H., Berger, B., & Duffau, H. (2008). A discrete area within the left dorsolateral prefrontal cortex involved in visual-verbal incongruence judgment. CeReBrAl Cortex, 18(6), 1253–1259.

    Article  PubMed  Google Scholar 

  • Posner, M. I., & DiGirolamo, G. J. (1998). The attentive brain. Executive Attention: Conflict, Target Detection and Cognitive Control, 401–423.

  • Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual RevIew of Neuroscience, 13, 25–42.

    Article  CAS  PubMed  Google Scholar 

  • Posner, M. I., Petersen, S. E., Fox, P. T., & Raichle, M. E. (1988). Localization of cognitive operations in the human brain. Science, 240(4859), 1627-1631.

    Article  CAS  PubMed  Google Scholar 

  • Posner, M. I., & Snyder, C. R. R. (1975). Attention and Cognitive Control. In R. L. Solso (Ed.), Information Processing and Cognition: The Loyola Symposium. Lawrence Erlbaum.

  • Postle, B. R. (2006). Working memory as an emergent property of the mind and brain. Neuroscience, 139(1), 23–38.

    Article  CAS  PubMed  Google Scholar 

  • Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., Vogel, A. C., Laumann, T. O., Miezin, F. M., Schlaggar, B. L., & Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72(4), 665–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N., & Petersen, S. E. (2013). Evidence for hubs in human functional brain networks. Neuron, 79(4), 798–813.

    Article  CAS  PubMed  Google Scholar 

  • Ptak, R., & Schnider, A. (2010). The dorsal attention network mediates orienting toward behaviorally relevant stimuli in spatial neglect. The Journal of Neuroscience: THe Official Journal of the Society for Neuroscience, 30(38), 12557–12565.

    Article  CAS  PubMed  Google Scholar 

  • Puglisi, G., Howells, H., Sciortino, T., Leonetti, A., Rossi, M., Conti Nibali, M., Gabriel Gay, L., Fornia, L., Bellacicca, A., Viganò, L., Simone, L., Catani, M., Cerri, G., & Bello, L. (2019). Frontal pathways in cognitive control: direct evidence from intraoperative stimulation and diffusion tractography. Brain: A Journal of Neurology, 142(8), 2451–2465.

  • Quentin, R., Chanes, L., Vernet, M., & Valero-Cabré, A. (2015). Fronto-parietal anatomical connections influence the modulation of conscious visual perception by high-beta frontal oscillatory activity. Cerebral Cortex, 25(8), 2095–2101.

    Article  PubMed  Google Scholar 

  • Quentin, R., Elkin Frankston, S., Vernet, M., Toba, M. N., Bartolomeo, P., Chanes, L., & Valero-Cabré, A. (2016). Visual contrast sensitivity improvement by right frontal high-beta activity is mediated by contrast gain mechanisms and influenced by fronto-parietal white matter microstructure. Cerebral CortEx, 26(6), 2381–2390.

    Article  PubMed  Google Scholar 

  • Raghavachari, S., Kahana, M. J., Rizzuto, D. S., Caplan, J. B., Kirschen, M. P., Bourgeois, B., Madsen, J. R., & Lisman, J. E. (2001). Gating of human theta oscillations by a working memory task. The Journal of Neuroscience: THe Official Journal of the Society for Neuroscience, 21(9), 3175–3183.

    Article  CAS  PubMed  Google Scholar 

  • Raghavachari, S., Lisman, J. E., Tully, M., Madsen, J. R., Bromfield, E. B., & Kahana, M. J. (2006). Theta oscillations in human cortex during a working-memory task: Evidence for local generators. Journal of Neurophysiology, 95(3), 1630–1638.

    Article  CAS  PubMed  Google Scholar 

  • Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramnani, N., & Owen, A. M. (2004). Anterior prefrontal cortex: Insights into function from anatomy and neuroimaging. Nature Reviews. Neuroscience, 5(3), 184–194.

    Article  CAS  PubMed  Google Scholar 

  • Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20(4), 873–922.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. Psychological Science, 9(5), 347–356.

    Article  Google Scholar 

  • Ray, S., & Maunsell, J. H. R. (2011). Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biology, 9(4), e1000610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redick, T. S., Heitz, R. P., & Engle, R. W. (2007). Working memory capacity and inhibition: Cognitive and social consequences. In D. S. Gorfein (Ed.), Inhibition in cognition (Vol. 337, pp. 125–142). American Psychological Association, xvii.

  • Reitan, R. M., & Wolfson, D. (1985). The halstead-reitan neuropsychological test battery: Therapy and clinical interpretation. Neuropsychological Press.

    Google Scholar 

  • Reitan, R. M., & Wolfson, D. (1993). The halstead-reitan neuropsychological test battery: Theory and clinical interpretation (2nd ed.). Neuropsychology Press.

    Google Scholar 

  • Rey-Mermet, A., Gade, M., Souza, A. S., Von Bastian, C. C., & Oberauer, K. (2019). Is executive control related to working memory capacity and fluid intelligence? Journal of Experimental Psychology: General, 148(8), 1335.

    Article  PubMed  Google Scholar 

  • Richer, F., Décary, A., Lapierre, M. F., Rouleau, I., Bouvier, G., & Saint-Hilaire, J. M. (1993). Target detection deficits in frontal lobectomy. Brain and Cognition, 21(2), 203–211.

    Article  CAS  PubMed  Google Scholar 

  • Riggall, A. C., & Postle, B. R. (2012). The relationship between working memory storage and elevated activity as measured with functional magnetic resonance imaging. The Journal of Neuroscience: THe Official Journal of the Society for Neuroscience, 32(38), 12990–12998.

    Article  CAS  PubMed  Google Scholar 

  • Rizio, A. A., & Diaz, M. T. (2016). Language, aging, and cognition: frontal aslant tract and superior longitudinal fasciculus contribute toward working memory performance in older adults. Neuroreport, 27(9), 689–693. https://doi.org/10.1097/WNR.0000000000000597

    Article  PubMed  PubMed Central  Google Scholar 

  • Robbins, T. W. (1996). Dissociating executive functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 351(1346), 1463–1470; discussion 1470–1471.

  • Robbins, T. W. (2007). Shifting and stopping: fronto-striatal substrates, neurochemical modulation and clinical implications. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1481), 917–932.

  • Robertson, I. H., Tegnér, R., Tham, K., Lo, A., & Nimmo-Smith, I. (1995). Sustained attention training for unilateral neglect: Theoretical and rehabilitation implications. Journal of Clinical and Experimental Neuropsychology, 17(3), 416–430.

    Article  CAS  PubMed  Google Scholar 

  • Robles, S. G., Gatignol, P., Capelle, L., Mitchell, M. C., & Duffau, H. (2005). The role of dominant striatum in language: a study using intraoperative electrical stimulations. Journal of Neurology, Neurosurgery & Psychiatry, 76(7), 940-946.

    Article  Google Scholar 

  • Rodriguez, J. S., & Paule, M. G. (2009). Working memory delayed response tasks in monkeys. In J.J. Buccafusco (Ed.), Methods of Behavior Analysis in Neuroscience. 2nd edition. CRC Press/Taylor & Francis

  • Rojkova, K., Volle, E., Urbanski, M., Humbert, F., Dell’Acqua, F., & Thiebaut de Schotten, M. (2016). Atlasing the frontal lobe connections and their variability due to age and education: A spherical deconvolution tractography study. Brain Structure & Function, 221(3), 1751–1766.

    Article  CAS  Google Scholar 

  • Rouder, J. N., & Haaf, J. M. (2019). A psychometrics of individual differences in experimental tasks. Psychonomic Bulletin & Review, 26(2), 452–467.

    Article  Google Scholar 

  • Roussel, M., Dujardin, K., Hénon, H., & Godefroy, O. (2012). Is the frontal dysexecutive syndrome due to a working memory deficit? Evidence from patients with stroke. Brain: A Journal of Neurology, 135(Pt 7), 2192–2201.

  • Roux, F., Dufor, O., Lauwers-Cances, V., Boukhatem, L., Brauge, D., Draper, L., Lotterie, J.-A., & Démonet, J.-F. (2011). Electrostimulation mapping of spatial neglect. Neurosurgery, 69(6), 1218–1231.

    Article  PubMed  Google Scholar 

  • Roux, F., & Uhlhaas, P. J. (2014). Working memory and neural oscillations: Alpha–gamma versus theta–gamma codes for distinct WM information? Trends in Cognitive Sciences, 18(1), 16–25.

    Article  PubMed  Google Scholar 

  • Rubia, K. (2009). The neurobiology of meditation and its clinical effectiveness in psychiatric disorders. Biological Psychology, 82(1), 1–11.

    Article  PubMed  Google Scholar 

  • Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X., & Kastner, S. (2012). The pulvinar regulates information transmission between cortical areas based on attention demands. Science, 337(6095), 753–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadaghiani, S., & D’Esposito, M. (2015). Functional characterization of the cingulo-opercular network in the maintenance of tonic alertness. Cerebral Cortex, 25(9), 2763–2773.

    Article  PubMed  Google Scholar 

  • Sarazin, M., Pillon, B., Giannakopoulos, P., Rancurel, G., Samson, Y., & Dubois, B. (1998). Clinicometabolic dissociation of cognitive functions and social behavior in frontal lobe lesions. Neurology, 51(1), 142–148.

    Article  CAS  PubMed  Google Scholar 

  • Sarubbo, S., Tate, M., De Benedictis, A., Merler, S., Moritz-Gasser, S., Herbet, G., & Duffau, H. (2020). Mapping critical cortical hubs and white matter pathways by direct electrical stimulation: an original functional atlas of the human brain. Neuroimage, 205, 116237.

  • Schenkenberg, T., Bradford, D. C., & Ajax, E. T. (1980). Line bisection and unilateral visual neglect in patients with neurologic impairment. Neurology, 30(5), 509–517.

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann, J. D., Schmahmann, J., & Pandya, D. (2009). Fiber pathways of the brain. Oxford University Press.

    Google Scholar 

  • Schmalbach, B., Günther, V., Raethjen, J., Wailke, S., Falk, D., Deuschl, G., & Witt, K. (2014). The subthalamic nucleus influences visuospatial attention in humans. Journal of CognitIve Neuroscience, 26(3), 543–550.

    Article  PubMed  Google Scholar 

  • Seidel Malkinson, T., Bayle, D. J., Bourgeois, A., Lehongre, K., Fernandez-Vidal, S., Navarro, V., Adam, C., Lambrecq, V., Margulies, D.S., Sitt, J.D. & Bartolomeo, P. (2021). From perception to action: Intracortical recordings reveal cortical gradients of human exogenous attention. bioRxiv.

  • Serra, L., Gabrielli, G. B., Tuzzi, E., Spanò, B., Giulietti, G., Failoni, V., Marra, C., Caltagirone, C., Koch, G., Cercignani, M., & Bozzali, M. (2017). Damage to the frontal aslant tract accounts for visuo-constructive deficits in alzheimer’s disease. Journal of Alzheimer’s Disease: JAD, 60(3), 1015–1024.

    Article  PubMed  Google Scholar 

  • Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 298(1089), 199–209.

  • Shallice, T. (2002). Fractionation of the supervisory system. In D. T. Stuss (Ed.), Principles of frontal lobe function (Vol. 616, pp. 261–277). Oxford University Press, xxi.

  • Shallice, T., Stuss, D. T., Alexander, M. P., Picton, T. W., & Derkzen, D. (2008). The multiple dimensions of sustained attention. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 44(7), 794–805.

    Article  PubMed  Google Scholar 

  • Shamay-Tsoory, S. G., Aharon-Peretz, J., & Perry, D. (2009). Two systems for empathy: a double dissociation between emotional and cognitive empathy in inferior frontal gyrus versus ventromedial prefrontal lesions. Brain: A Journal of Neurology, 132(Pt 3), 617–627.

  • Shapira-Lichter, I., Oren, N., Jacob, Y., Gruberger, M., & Hendler, T. (2013). Portraying the unique contribution of the default mode network to internally driven mnemonic processes. Proceedings of the National Academy of Sciences of the United StatEs of America, 110(13), 4950–4955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenhav, A., Cohen, J. D., & Botvinick, M. M. (2016). Dorsal anterior cingulate cortex and the value of control. Nature Neuroscience, 19(10), 1286–1291.

    Article  CAS  PubMed  Google Scholar 

  • Shine, J. M., Bissett, P. G., Bell, P. T., Koyejo, O., Balsters, J. H., Gorgolewski, K. J., ..., & Poldrack, R. A. (2016). The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron, 92(2), 544–554.

  • Shine, J. M., & Poldrack, R. A. (2018). Principles of dynamic network reconfiguration across diverse brain states. NeuroImage, 180, 396–405.

    Article  PubMed  Google Scholar 

  • Silvanto, J., Lavie, N., & Walsh, V. (2006). Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex. Journal of Neurophysiology, 96(2), 941–945.

    Article  PubMed  Google Scholar 

  • Simon, J. R. (1990). The effects of an irrelevant directional CUE on human information processing. In R. W. Proctor & T. G. Reeve (Eds.), Advances in psychology (Vol. 65, pp. 31–86). North-Holland.

  • Simon, J. R., & Rudell, A. P. (1967). Auditory S-R compatibility: The effect of an irrelevant cue on information processing. The Journal of Applied Psychology, 51(3), 300–304.

    Article  CAS  PubMed  Google Scholar 

  • Simon, J. R., & Small, A. M., Jr. (1969). Processing auditory information: Interference from an irrelevant cue. The Journal of Applied Psychology, 53(5), 433–435.

    Article  CAS  PubMed  Google Scholar 

  • Smirni, D., Turriziani, P., Mangano, G. R., Bracco, M., Oliveri, M., & Cipolotti, L. (2017). Modulating phonemic fluency performance in healthy subjects with transcranial magnetic stimulation over the left or right lateral frontal cortex. Neuropsychologia, 102, 109–115.

    Article  PubMed  Google Scholar 

  • Smith, E. E., Jonides, J., & Koeppe, R. A. (1996). Dissociating verbal and spatial working memory using PET. Cerebral Cortex, 6(1), 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Smith, E. H., Horga, G., Yates, M. J., Mikell, C. B., Banks, G. P., Pathak, Y. J., Schevon, C. A., McKhann, G. M., 2nd., Hayden, B. Y., Botvinick, M. M., & Sheth, S. A. (2019). Widespread temporal coding of cognitive control in the human prefrontal cortex. Nature Neuroscience, 22(11), 1883–1891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, K., Meng, M., Chen, L., Zhou, K., & Luo, H. (2014). Behavioral oscillations in attention: Rhythmic α pulses mediated through θ band. The Journal of Neuroscience: THe Official Journal of the Society for Neuroscience, 34(14), 4837–4844.

    Article  CAS  PubMed  Google Scholar 

  • Spagna, A., Bayle, D. J., Romeo, Z., Seidel-Malkinson, T., Liu, J., Yahia-Cherif, L., Chica, A. B., & Bartolomeo, P. (2022). The cost of attentional reorienting on conscious visual perception: an MEG study. Cerebral Cortex (New York, N.Y. : 1991), bhac192. Advance online publication. https://doi.org/10.1093/cercor/bhac192

  • Spagna, A., Wang, J., Rosario, I. E., Zhang, L., Zu, M., Wang, K., & Tian, Y. (2022). Cognitive considerations in major depression: evaluating the effects of pharmacotherapy and ECT on mood and executive control deficits. Brain Sciences, 12(3), 350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spagna, A., Wu, T., Kim, K., & Fan, J. (2020). Supramodal executive control of attention: Evidence from unimodal and crossmodal dual conflict effects. Cortex, 133, 266–276.

    Article  PubMed  Google Scholar 

  • Spagna, A., He, G., Jin, S., Gao, L., Mackie, M.-A., Tian, Y., Wang, K., & Fan, J. (2018). Deficit of supramodal executive control of attention in schizophrenia. Journal of Psychiatric Research, 97, 22–29.

    Article  PubMed  Google Scholar 

  • Spagna, A., Mackie, M.-A., & Fan, J. (2015). Supramodal executive control of attention. Frontiers in Psychology, 6, 65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spearman, C. (1927). The abilities of man. Macmillan

    Google Scholar 

  • Sreenivasan, K. K., Curtis, C. E., & D’Esposito, M. (2014). Revisiting the role of persistent neural activity during working memory. Trends in Cognitive Sciences, 18(2), 82–89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sreenivasan, V., & Sridharan, D. (2019). Subcortical connectivity correlates selectively with attention’s effects on spatial choice bias. Proceedings of the National Academy of Sciences of the United States of America, 116(39), 19711–19716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stengel, C., Sanches, C., Toba, M. N., & Valero-Cabré, A. (2022). Things you wanted to know (but might have been afraid to ask) about how and why to explore and modulate brain plasticity with non-invasive neurostimulation technologies. Revue Neurologique, 178, 826–844.

    Article  CAS  PubMed  Google Scholar 

  • Stone, J. J., Reynolds, M. R., & Leuthardt, E. C. (2011). Transient hemispatial neglect after surgical resection of a right frontal lobe mass. World Neurosurgery, 76(3–4), 361.e7-e10.

    Article  PubMed  Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. JourNal of Experimental Psychology, 18(6), 643–662.

    Article  Google Scholar 

  • Sturm, W., & Willmes, K. (2001). On the functional neuroanatomy of intrinsic and phasic alertness. NeuroImage, 14(1 Pt 2), S76–S84.

    Article  CAS  PubMed  Google Scholar 

  • Stuss, D. T. (2011). Functions of the frontal lobes: Relation to executive functions. Journal of the International NeuropsycHoLogIcal Society: JINS, 17(5), 759–765.

    Article  PubMed  Google Scholar 

  • Stuss, D. T., & Alexander, M. P. (2000). Executive functions and the frontal lobes: A conceptual view. Psychological Research Psychologische Forschung, 63(3–4), 289–298.

    Article  CAS  PubMed  Google Scholar 

  • Stuss, D. T., & Alexander, M. P. (2007). Is there a dysexecutive syndrome? Philosophical transactions of the royal society of London. Series B, Biological Sciences, 362(1481), 901–915.

    Article  Google Scholar 

  • Stuss, D. T., Alexander, M. P., Shallice, T., Picton, T. W., Binns, M. A., Macdonald, R., Borowiec, A., & Katz, D. I. (2005). Multiple frontal systems controlling response speed. Neuropsychologia, 43(3), 396–417.

    Article  PubMed  Google Scholar 

  • Stuss, D. T., & Benson, D. F. (1984). Neuropsychological studies of the frontal lobes. Psychological Bulletin, 95(1), 3–28.

    Article  CAS  PubMed  Google Scholar 

  • Stuss, D. T., Benson, D. F., Kaplan, E. F., Weir, W. S., & Della Malva, C. (1981). Leucotomized and nonleucotomized schizophrenics: Comparison on tests of attention. Biological Psychiatry, 16(11), 1085–1100.

    CAS  PubMed  Google Scholar 

  • Stuss, D. T., Bisschop, S. M., Alexander, M. P., Levine, B., Katz, D., & Izukawa, D. (2001). The trail making test: A study in focal lesion patients. Psychological Assessment, 13(2), 230–239.

    Article  CAS  PubMed  Google Scholar 

  • Stuss, D. T., Levine, B., Alexander, M. P., Hong, J., Palumbo, C., Hamer, L., Murphy, K. J., & Izukawa, D. (2000). Wisconsin card sorting test performance in patients with focal frontal and posterior brain damage: Effects of lesion location and test structure on separable cognitive processes. Neuropsychologia, 38(4), 388–402.

    Article  CAS  PubMed  Google Scholar 

  • Stuss, D. T., Shallice, T., Alexander, M. P., & Picton, T. W. (1995). A multidisciplinary approach to anterior attentional functions. Annals of the New York Academy of Sciences, 769, 191–211.

    Article  CAS  PubMed  Google Scholar 

  • Sun, L., Peräkylä, J., Polvivaara, M., Öhman, J., Peltola, J., Lehtimäki, K., Huhtala, H., & Hartikainen, K. M. (2015). Human anterior thalamic nuclei are involved in emotion-attention interaction. Neuropsychologia, 78, 88–94.

    Article  PubMed  Google Scholar 

  • Swick, D., & Jovanovic, J. (2002). Anterior cingulate cortex and the stroop task: Neuropsychological evidence for topographic specificity. Neuropsychologia, 40(8), 1240–1253.

    Article  PubMed  Google Scholar 

  • Swick, D., & Turken, A. U. (2002). Dissociation between conflict detection and error monitoring in the human anterior cingulate cortex. Proceedings of the National Academy of Sciences of the United States of America, 99(25), 16354–16359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szczepanski, S. M., & Knight, R. T. (2014). Insights into human behavior from lesions to the prefrontal cortex. Neuron, 83(5), 1002–1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szelényi, A., Bello, L., Duffau, H., Fava, E., Feigl, G. C., Galanda, M., Neuloh, G., Signorelli, F., Sala, F., & Workgroup for Intraoperative Management in Low-Grade Glioma Surgery within the European Low-Grade Glioma Network. (2010). Intraoperative electrical stimulation in awake craniotomy: methodological aspects of current practice. Neurosurgical Focus, 28(2), E7.

  • Tallon-Baudry, C., Bertrand, O., Hénaff, M.-A., Isnard, J., & Fischer, C. (2005). Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cerebral Cortex, 15(5), 654–662.

    Article  PubMed  Google Scholar 

  • Tang, Y. Y., & Posner, M. I. (2014). Training brain networks and states. Trends in Cognitive Sciences, 18(7), 345–350.

    Article  PubMed  Google Scholar 

  • Tas, A. C., Luck, S. J., & Hollingworth, A. (2016). The relationship between visual attention and visual working memory encoding: A dissociation between covert and overt orienting. Journal of Experimental Psychology. Human Perception and Performance, 42(8), 1121–11383.

    Article  PubMed  PubMed Central  Google Scholar 

  • Theeuwes, J., Belopolsky, A., & Olivers, C. N. L. (2009). Interactions between working memory, attention and eye movements. Acta Psychologica, 132(2), 106–114. https://doi.org/10.1016/j.actpsy.2009.01.005

    Article  PubMed  Google Scholar 

  • Thiebaut de Schotten, M., Dell’Acqua, F., Forkel, S., Simmons, A., Vergani, F., Murphy, D. G. M., & Catani, M. (2011). A Lateralized brain network for visuo-spatial attention. Nature Precedings. https://doi.org/10.1038/npre.2011.5549.1

    Article  Google Scholar 

  • Thiebaut de Schotten, M., Dell’Acqua, F., Valabregue, R., & Catani, M. (2012). Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 48(1), 82–96.

    Article  PubMed  Google Scholar 

  • Thiebaut de Schotten, M., & Foulon, C. (2018). The rise of a new associationist school for lesion-symptom mapping [Review of The rise of a new associationist school for lesion-symptom mapping]. Brain: A Journal of Neurology, 141(1), 2–4. academic.oup.com.

  • Thiebaut de Schotten, M., Urbanski, M., Batrancourt, B., Levy, R., Dubois, B., Cerliani, L., & Volle, E. (2017). Rostro-caudal architecture of the frontal lobes in humans. Cerebral Cortex, 27(8), 4033–4047.

    PubMed  Google Scholar 

  • Thiebaut de Schotten, M., Urbanski, M., Duffau, H., Volle, E., Lévy, R., Dubois, B., & Bartolomeo, P. (2005). Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science, 309(5744), 2226–2228. https://doi.org/10.1126/science.1116251

    Article  CAS  PubMed  Google Scholar 

  • Thomson, D. R., Besner, D., & Smilek, D. (2015). A resource-control account of sustained attention: Evidence from mind-wandering and vigilance paradigms. Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 10(1), 82–96.

    Article  PubMed  Google Scholar 

  • Toba, M. N., Cavanagh, P., & Bartolomeo, P. (2011). Attention biases the perceived midpoint of horizontal lines. Neuropsychologia, 49(2), 238–246.

    Article  PubMed  Google Scholar 

  • Toba, M. N., Godefroy, O., Rushmore, R. J., Zavaglia, M., Maatoug, R., Hilgetag, C. C., & Valero-Cabré, A. (2020a). Revisiting “brain modes” in a new computational era: approaches for the characterization of brain-behavioural associations. Brain: A Journal of Neurology, 143(4), 1088–1098.

  • Toba, M. N., Malherbe, C., Godefroy, O., Rushmore, R. J., Zavaglia, M., Maatoug, R., Mandonnet, E., Valero-Cabré, A., & Hilgetag, C. C. (2020b). Reply: Inhibition between human brain areas or methodological artefact? Brain: A Journal of Neurology, 143(5), e39.

  • Toba, M. N., Migliaccio, R., Batrancourt, B., Bourlon, C., Duret, C., Pradat-Diehl, P., Dubois, B., & Bartolomeo, P. (2018a). Common brain networks for distinct deficits in visual neglect. A combined structural and tractography MRI approach. Neuropsychologia, 115, 167–178.

    Article  PubMed  Google Scholar 

  • Toba, M. N., Migliaccio, R., Potet, A., Pradat-Diehl, P., & Bartolomeo, P. (2022). Right-side spatial neglect and white matter disconnection after left-hemisphere strokes. Brain Structure & Function, 227(9), 2991–3000. https://doi.org/10.1007/s00429-022-02541-7

    Article  Google Scholar 

  • Toba, M. N., Pagliari, C., Rabuffetti, M., Nighoghossian, N., Rode, G., Cotton, F., & Bartolomeo, P. (2021). Quantitative assessment of motor neglect. Stroke, 52(5), 1618–1627.

    Article  PubMed  Google Scholar 

  • Toba, M. N., Rabuffetti, M., Duret, C., Pradat-Diehl, P., Gainotti, G., & Bartolomeo, P. (2018b). Component deficits of visual neglect: “Magnetic” attraction of attention vs. impaired spatial working memory. Neuropsychologia, 109, 52–62.

    Article  PubMed  Google Scholar 

  • Toba, M. N., Zavaglia, M., Malherbe, C., Moreau, T., Rastelli, F., Kaglik, A., Valabrègue, R., Pradat-Diehl, P., Hilgetag, C. C., & Valero-Cabré, A. (2020c). Game theoretical mapping of white matter contributions to visuospatial attention in stroke patients with hemineglect. Human Brain Mapping, 41(11), 2926–2950.

    Article  PubMed  PubMed Central  Google Scholar 

  • Toba, M. N., Zavaglia, M., Rastelli, F., Valabrégue, R., Pradat-Diehl, P., Valero-Cabré, A., & Hilgetag, C. C. (2017). Game theoretical mapping of causal interactions underlying visuo-spatial attention in the human brain based on stroke lesions. Human Brain Mapping, 38(7), 3454–3471.

    PubMed  PubMed Central  Google Scholar 

  • Trimble, M. R. (1986). The Frontal Lobes. By Donald T. Stuss and Frank D. Benson. New York: Raven Press. 1986. pp 303. $65.50. British Journal of Psychiatry, 149(3):393–394. https://doi.org/10.1192/s000712500021386x

  • Tsuchida, A., & Fellows, L. K. (2009). Lesion evidence that two distinct regions within prefrontal cortex are critical for n-back performance in humans. Journal of Cognitive Neuroscience, 21(12), 2263–2275.

    Article  PubMed  Google Scholar 

  • Uddin, L. Q., Yeo, B. T. T., & Spreng, R. N. (2019). Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topography, 32(6), 926–942.

    Article  PubMed  PubMed Central  Google Scholar 

  • Urbanski, M., & Bartolomeo, P. (2008). Line bisection in left neglect: the importance of starting right. Cortex, 44(7), 782–793.

    Article  PubMed  Google Scholar 

  • Vaidya, A. R., Pujara, M. S., Petrides, M., Murray, E. A., & Fellows, L. K. (2019). Lesion studies in contemporary neuroscience. Trends in Cognitive Sciences, 23(8), 653–671.

    Article  PubMed  PubMed Central  Google Scholar 

  • Valero-Cabré, A., Amengual, J. L., Stengel, C., Pascual-Leone, A., & Coubard, O. A. (2017). Transcranial magnetic stimulation in basic and clinical neuroscience: A comprehensive review of fundamental principles and novel insights. Neuroscience and Biobehavioral Reviews, 83, 381–404.

    Article  PubMed  Google Scholar 

  • Valero-Cabré, A., Toba, M. N., Hilgetag, C. C., & Rushmore, R. J. (2020). Perturbation-driven paradoxical facilitation of visuo-spatial function: revisiting the ‘Sprague effect’. Cortex, 122, 10-39.

    Article  PubMed  Google Scholar 

  • Vallar, G., Bello, L., Bricolo, E., Castellano, A., Casarotti, A., Falini, A., Riva, M., Fava, E., & Papagno, C. (2014). Cerebral correlates of visuospatial neglect: A direct cerebral stimulation study. Human Brain Mapping, 35(4), 1334–1350.

    Article  PubMed  Google Scholar 

  • Vallesi, A., & Babcock, L. (2020). Asymmetry of the frontal aslant tract is associated with lexical decision. Brain Structure & Function, 225(3), 1009–1017.

    Article  Google Scholar 

  • Vallesi, A., Mussoni, A., Mondani, M., Budai, R., Skrap, M., & Shallice, T. (2007). The neural basis of temporal preparation: Insights from brain tumor patients. Neuropsychologia, 45(12), 2755–2763.

    Article  PubMed  Google Scholar 

  • van den Heuvel, M. P., Mandl, R. C., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Human Brain Mapping, 30(10), 3127–3141. https://doi.org/10.1002/hbm.20737

    Article  PubMed  PubMed Central  Google Scholar 

  • Van der Werf, Y. D., Scheltens, P., Lindeboom, J., Witter, M. P., Uylings, H. B. M., & Jolles, J. (2003). Deficits of memory, executive functioning and attention following infarction in the thalamus; a study of 22 cases with localised lesions. Neuropsychologia, 41(10), 1330–1344.

    Article  PubMed  Google Scholar 

  • Van Der Werf, Y. D., Weerts, J. G., Jolles, J., Witter, M. P., Lindeboom, J., & Scheltens, P. (1999). Neuropsychological correlates of a right unilateral lacunar thalamic infarction. Journal of Neurology, Neurosurgery, and Psychiatry, 66(1), 36–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • VanRullen, R. (2016). Perceptual cycles. Trends in Cognitive Sciences, 20(10), 723–735.

    Article  PubMed  Google Scholar 

  • Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews. Neuroscience, 2(4), 229–239.

    Article  CAS  PubMed  Google Scholar 

  • Varriano, F., Pascual-Diaz, S., & Prats-Galino, A. (2018). When the FAT goes wide: Right extended frontal aslant tract volume predicts performance on working memory tasks in healthy humans. PLoS ONE, 13(8), e0200786.

    Article  PubMed  PubMed Central  Google Scholar 

  • Varriano, F., Pascual-Diaz, S., & Prats-Galino, A. (2020). Distinct components in the right extended frontal aslant tract mediate language and working memory performance: A tractography-informed VBM study. Frontiers in Neuroanatomy, 14, 21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vataja, R., Pohjasvaara, T., Mäntylä, R., Ylikoski, R., Leppävuori, A., Leskelä, M., Kalska, H., Hietanen, M., Aronen, H. J., Salonen, O., Kaste, M., & Erkinjuntti, T. (2003). MRI correlates of executive dysfunction in patients with ischaemic stroke. European Journal of Neurology: THe Official Journal of the European Federation of Neurological Societies, 10(6), 625–631.

    Article  CAS  Google Scholar 

  • Vendrell, P., Junqué, C., Pujol, J., Jurado, M. A., Molet, J., & Grafman, J. (1995). The role of prefrontal regions in the Stroop task. Neuropsychologia, 33(3), 341–352.

    Article  CAS  PubMed  Google Scholar 

  • Verdon, V., Schwartz, S., Lovblad, K.-O., Hauert, C.-A., & Vuilleumier, P. (2010). Neuroanatomy of hemispatial neglect and its functional components: a study using voxel-based lesion-symptom mapping. Brain: A Journal of Neurology, 133(Pt 3), 880–894.

  • Vergani, F., Lacerda, L., Martino, J., Attems, J., Morris, C., Mitchell, P., Thiebaut de Schotten, M., & Dell’Acqua, F. (2014). White matter connections of the supplementary motor area in humans. Journal of Neurology, Neurosurgery, and Psychiatry, 85(12), 1377–1385.

    Article  PubMed  Google Scholar 

  • Vernet, M., Quentin, R., Chanes, L., Mitsumasu, A., & Valero-Cabré, A. (2014). Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations. Frontiers in Integrative Neuroscience, 8, 66.

    PubMed  PubMed Central  Google Scholar 

  • Viviani, G., & Vallesi, A. (2021). EEG-neurofeedback and executive function enhancement in healthy adults: A systematic review. Psychophysiology, 58(9), e13874.

    Article  PubMed  PubMed Central  Google Scholar 

  • Voets, N. L., & Plaha, P. (2019). Unsilencing the right hemisphere: new insights from awake neurosurgery. Brain : A Journal of Neurology, 142(8), 2176–2178. https://doi.org/10.1093/brain/awz197

    Article  PubMed  Google Scholar 

  • Vossel, S., Geng, J. J., & Fink, G. R. (2014). Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 20(2), 150–159.

    Article  PubMed  Google Scholar 

  • Wager, M., Du Boisgueheneuc, F., Pluchon, C., Bouyer, C., Stal, V., Bataille, B., Guillevin, C. M., & Gil, R. (2013). Intraoperative monitoring of an aspect of executive functions: administration of the Stroop test in 9 adult patients during awake surgery for resection of frontal glioma. Neurosurgery, 72(2 Suppl Operative), ons169–ons180; discussion ons180–ons181.

  • Wallesch, C. W., Kornhuber, H. H., Köllner, C., Haas, H. C., & Hufnagl, J. M. (1983). Language and cognitive deficits resulting from medial and dorsolateral frontal lobe lesions. ArcHiv Fur Psychiatrie Und Nervenkrankheiten, 233(4), 279–296.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Wang, Y.-Y., Jiang, T., Wang, Y.-Z., & Wu, C.-X. (2013). Direct evidence of the left caudate’s role in bilingual control: An intra-operative electrical stimulation study. Neurocase, 19(5), 462–469.

    Article  PubMed  Google Scholar 

  • Wechsler, D. (1981). Manual for the Wechsler adult intelligence scale—revised. Psychological Corporation.

    Google Scholar 

  • Wechsler, D. (2008). Wechsler adult intelligence scale–Fourth Edition (WAIS–IV). NCS Pearson San Antonio, 22(498), 1.

  • Weigl, E. (1927). Zur Psychologie sogenannter Abstraktionsprozesse. I. Untersuchungen über das “Ordnen”. / On the psychology of the so-called processes of abstraction. I. Investigations on “arranging in order.” Zeitschrift Für Psychologie, 103, 1–45.

    Google Scholar 

  • Wilson, B., Cockburn, J., & Halligan, P. (1987). Development of a behavioral test of visuospatial neglect. Archives of Physical Medicine and Rehabilitation, 68(2), 98–102.

    CAS  PubMed  Google Scholar 

  • Wilson, C. R. E., Gaffan, D., Browning, P. G. F., & Baxter, M. G. (2010). Functional localization within the prefrontal cortex: Missing the forest for the trees? Trends in Neurosciences, 33(12), 533–540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolgar, A., Duncan, J., Manes, F., & Fedorenko, E. (2018). Fluid intelligence is supported by the multiple-demand system not the language system. Nature Human Behaviour, 2(3), 200–204. https://doi.org/10.1038/s41562-017-0282-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, T., Chen, C., Spagna, A., Wu, X., Mackie, M., Russell-Giller, S., Xu, P., Luo, Y., Liu, X., Hof, P. R., & Fan, J. (2020). The functional anatomy of cognitive control: A domain-general brain network for uncertainty processing. Journal of Comparative Neurology, 528(8), 1265–1292. https://doi.org/10.1002/cne.24804

    Article  PubMed  Google Scholar 

  • Wu, T., Dufford, A. J., Egan, L. J., Mackie, M.-A., Chen, C., Yuan, C., Chen, C., Li, X., Liu, X., Hof, P. R., & Fan, J. (2018). Hick-hyman law is mediated by the cognitive control network in the brain. Cerebral Cortex, 28(7), 2267–2282.

    Article  PubMed  Google Scholar 

  • Xuan, B., Mackie, M.-A., Spagna, A., Wu, T., Tian, Y., Hof, P. R., & Fan, J. (2016). The activation of interactive attentional networks. NeuroImage, 129, 308–319.

    Article  PubMed  Google Scholar 

  • Xue, S. W., Tang, Y. Y., Tang, R., & Posner, M. I. (2014). Short-term meditation induces changes in brain resting EEG theta networks. Brain and Cognition, 87, 1–6.

    Article  PubMed  Google Scholar 

  • Yeo, B. T., Krienen, F. M., Eickhoff, S. B., Yaakub, S. N., Fox, P. T., Buckner, R. L., & Chee, M. W. (2015). Functional specialization and flexibility in human association cortex. Cerebral Cortex, 25(10), 3654–3672.

    Article  PubMed  Google Scholar 

  • Yeung, N. (2013). Conflict monitoring and cognitive control. In Oxford Handbooks Online. https://doi.org/10.1093/oxfordhb/9780199988709.013.0018

    Article  Google Scholar 

  • Yochim, B., Baldo, J., Nelson, A., & Delis, D. C. (2007). D-KEFS Trail Making Test performance in patients with lateral prefrontal cortex lesions. Journal of the International Neuropsychological Society: JINS, 13(4), 704–709.

    Article  PubMed  Google Scholar 

  • Zaghloul, K. A., Weidemann, C. T., Lega, B. C., Jaggi, J. L., Baltuch, G. H., & Kahana, M. J. (2012). Neuronal activity in the human subthalamic nucleus encodes decision conflict during action selection. The JoUrNal of Neuroscience: THe Official Journal of the Society for Neuroscience, 32(7), 2453–2460.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Hao, S., Lee, A., Eickhoff, S. B., Pecheva, D., Cai, S., ... & Qiu, A. (2020). Do intrinsic brain functional networks predict working memory from childhood to adulthood?. Human Brain Mapping, 41(16), 4574-4586.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Q., van Vugt, M., Borst, J. P., & Anderson, J. R. (2018). Mapping working memory retrieval in space and in time: A combined electroencephalography and electrocorticography approach. NeuroImage, 174, 472–484.

    Article  PubMed  Google Scholar 

  • Zhou, H., Schafer, R. J., & Desimone, R. (2016). Pulvinar-cortex interactions in vision and attention. Neuron, 89(1), 209–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present manuscript is the continuation of the work presented at the 7th scientific meeting of the Federation of the European Societies of Neuropsychology (FESN), Milan, Italy 2019 in the symposium “New insights on attention and cognitive control: behavioral, neuroimaging and neuropsychological evidence”.

We thank three anonymous reviewers for helpful comments on a previous version of the manuscript.

Funding

The work of MNT was supported by Conseil Régional des Hauts-de-France and Fonds Européens de Développement Économique et Régional (FEDER) through EOTP REG16032 and by the Société de Neuropsychologie de Langue Française through conference travel funding.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the manuscript.

Corresponding authors

Correspondence to Monica N. Toba or Alfredo Spagna.

Ethics declarations

Ethical Approval

Not applicable.

Competing interests

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Glossary

‘Attentional control of action’ model

Norman and Shallice (1986) proposed the existence of two attentional control processes: (a) the contention scheduling mechanism that selects between conflicting routine actions, and (b) the supervisory attentional system (SAS) that intervenes when the selection of routine actions is not sufficient (as in novel situations). The authors suggested that a deficit of a supervisory system involved in the control of action generates a dysexecutive syndrome.

Attentional episodes

Effective cognition requires the sequential resolution of hierarchically organized subproblems, each one with its own relevant inputs, actions, and outcomes. A step-by-step implementation (i.e., episode) of selective attention supports cognition by admitting into the current task set only relevant information (Duncan, 2013).

Attention Networks Model

First proposed by Posner and Petersen (1990) and later revised in 2012 (Petersen and Posner), this model identifies three independent but interactive attentional components of alerting (defined as the ability to produce and maintain a state of readiness to respond to incoming stimuli), orienting (defined as the ability to select some aspects of the information to prioritize its processing), and executive control of attention (the ability to select the most appropriate response among competing responses and suppressing the effect distracting information)

Covert or overt attention

The allocation of attention towards a region of the visual field with (overt) or without (covert) eye movements.

Dorsal Attention Network (DAN)

A bilateral set of frontal and parietal regions showing concurrent activation increases during goal-driven attention (Corbetta & Shulman, 2002).

Decision making

The process of deliberating between two or more options that vary in terms of subjective value or environmental relevance.

Direct electrocortical stimulation (DES)

A neurosurgical method for functional brain mapping. A small electrical current applied directly to cortex or white matter, causing temporary interruption to the underlying network. If behaviour remains unchanged following stimulation, the structure being probed is considered to be non-essential and resectable (i.e., its resection is unlikely to result in permanent neurological deficit), but if there is a relevant behavioural change with stimulation, the structure is considered to be an essential network component and therefore non-resectable.

Default Mode Network (DMN)

A bilateral set of medial regions (including, but not limited to, the ventrolateral prefrontal cortex, and the posterior cingulate cortex) showing concurrent deactivation during task execution in a variety of fMRI or PET studies (Raichle et al., 2001).

Exogenous Attention

Often studied using non-predictive visual cues preceding an upcoming visual target, defines the allocation of attentional resources towards a salient stimulus through an automatic, effortless, process.

Endogenous Attention

Often studied using predictive visual cues preceding an upcoming visual target, defines the allocation of attentional resources towards a behaviourally relevant stimulus through a voluntary, effortful, process implemented in a top-down fashion.

Fluid and Crystallised intelligence

The two components of general intelligence relate to reflecting ability to solve problems by abstraction (fluid) and the ability to solve problems by using general knowledge and previous experience (Cattell, 1963).

Functional MRI

An MRI technique that indirectly measures activation of brain regions based on blood flow (BOLD activity) either during the completion of a task (task-based) or at rest (resting state).

Frequency bands

Initially discovered in EEG studies, refer to the rhythmic, repetitive activity of brain waves recorded by electrodes. More recently studied using also other electrophysiological and neurophysiological methodologies. This rhythmic activity is usually divided into bands, including delta (< 4 Hz), theta (4 to 8 Hz), alpha (8 to 15 Hz), beta (15 to 32 Hz), and gamma (> 32 Hz).

g factor

A general factor that summarizes an individual cognitive abilities, often measured using IQ tests such as the Wechsler Adult Intelligence Scale, first proposed by Spearman (1927).

Hub area

A brain region (or sub-component of a network) critically positioned within the network architecture of the brain due to their high number of contacts with other brain regions (Power et al., 2013).

iEEG

Intracranial electroencephalography, an invasive method for recording electrical activity from small populations of neurons in the cerebral cortex and in subcortical structures, performed in patients with intractable epilepsy to localise their epileptic focus. Includes two types of recordings: (a) Electrocorticography (ECOG), recording of cortical activity using electrodes placed directly on the brain surface; and (b) Stereotactic EEG, recording of cortical and subcortical activity using penetrating depth electrodes inserted into the brain (Mukamel & Fried, 2012; Parvizi & Kastner, 2018).

Inhibition

The active process of suppressing irrelevant stimuli, task sets, behavioural responses, and unwanted thoughts from capturing resource-limited attentional function and, consequently, affecting performance (Aron, 2007).

Lateralization

A principle of brain organization that allocates the implementation of one cognitive function exclusively (or for the major part) to one cerebral hemisphere (e.g., Heilman & Van Den Abell, 1979).

Mind wandering

A mental state whereby the focus of attention is internal, self -generated thought (see Mason et al., 2007 for details).

Multivoxel pattern analysis (MVPA)

A statistical technique that applies pattern classification algorithms to Blood Oxygenation Level Dependent (BOLD) activity acquired using functional MRI.

Neglect (hemispatial neglect)

Failure to spontaneously orient to one side of space. Most often presents as left neglect following right hemisphere damage (Heilman & Watson, 1977).

Neural oscillations

Rhythmic patterns of neural activity in the central nervous system that can occur during activation of small-to-large populations of neurons and appear to support cognitive processes.

Phasic alerting

Temporary increase in responsiveness produced by the presentation of a sudden stimulus acting as a warning signal (Aston-Jones & Cohen, 2005).

Task set

A stimulus–response relationship that includes formation of a criterion to respond to a target, organization of the program to complete a specific task, and adjustments of the automatic processes.

Tonic alerting

The ability to produce and maintain a prolonged state of readiness in the attempt to detect rarely occurring stimuli, often characterized by a monotonic decrease in performance as the required task duration increases. Closely related to the concepts of energization and sustained attention in other attentional models (Aston-Jones & Cohen, 2005).

VAN

A set of fronto-parieto-temporal regions lateralized to the right hemisphere showing concurrent activation increases during bottom-up or exogenous attention (Corbetta & Shulman, 2002).

Voxel-based lesion-symptom mapping (VLSM)

Univariate method of neuroimaging analysis comparing patients with or without lesions in any given voxel (or region of interest, for the volume of interest-based version of this method) with respect to differences in behavioural measures (t-statistic is computed per voxel: see Bates et al., 2003 for details).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toba, M.N., Malkinson, T.S., Howells, H. et al. Same, Same but Different? A Multi-Method Review of the Processes Underlying Executive Control. Neuropsychol Rev (2023). https://doi.org/10.1007/s11065-023-09577-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11065-023-09577-4

Keywords

Navigation