Skip to main content

Advertisement

Log in

Exploring Visual–Spatial Working Memory: A Critical Review of Concepts and Models

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

The ability to retain and process an object’s identity and spatial location is essential for many daily tasks, often referred to as visual–spatial working memory. Research investigating visual–spatial processing has concentrated on three aspects or mechanisms thought to sub-serve this process; perceptual processes, anatomical correlates and working memory functions. An approach integrating all three areas has largely been neglected. Hence, this review sought to (1) outline some of the advances made to the understanding by these three concepts or models of visual–spatial processing, (2) establish the relationship between these processes, and discuss the challenges faced by researchers attempting to dissociate this functions from other visual–spatial processes as well as other working memory functions. It is suggested that a more comprehensive and integrative understanding of visual–spatial working memory has implications for research seeking to investigate visual–spatial memory, and to relate visual–spatial memory to other cognitive functions, such as executive function and attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111. doi:10.1111/j.0963-7214.2004.01502006.x.

    Article  PubMed  CAS  Google Scholar 

  • Andrewes, D. G. (2001). Neuropsychology: From theory to practice. New York: Psychology Press.

    Google Scholar 

  • Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence, & J. T. Spence (Eds.), The psychology of learning and motivation: Advances in research and theory (vol. 2, (pp. 89–195)). New York: Academic.

    Chapter  Google Scholar 

  • Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology: Human Perception and Performance, 24, 780–790. doi:10.1037/0096-1523.24.3.780.

    Article  PubMed  CAS  Google Scholar 

  • Baddeley, A. D. (1986). Working memory. Oxford: Clarendon.

    Google Scholar 

  • Baddeley, A. D. (1992). Working memory. Science, 255, 556–559. doi:10.1126/science.1736359.

    Article  PubMed  CAS  Google Scholar 

  • Baddeley, A. D. (1996a). Exploring the central executive. The Quarterly Journal of Experimental Psychology, 49A(1), 5–28. doi:10.1080/027249896392784.

    Google Scholar 

  • Baddeley, A. D. (1996b). The fractionation of working memory. Proceedings of the National Academy of Sciences USA, 93, 13468–13472. doi:10.1073/pnas.93.24.13468.

    Article  CAS  Google Scholar 

  • Baddeley, A. D. (1997). Human memory: Theory and practice (Revised ed.). East Sussex: Psychology Press.

    Google Scholar 

  • Baddeley, A. D. (1998a). The central executive: a concept and some misconceptions. Journal of the International Neuropsychological Society, 4, 523–526. doi:10.1017/S135561779800513X.

    Article  PubMed  CAS  Google Scholar 

  • Baddeley, A. D. (1998b). Recent developments in working memory. Current Opinion in Neurobiology, 8, 234–238. doi:10.1016/S0959-4388(98)80145-1.

    Article  PubMed  CAS  Google Scholar 

  • Baddeley, A. D. (1999). Essentials of human memory. East Sussex: Psychology Press.

    Google Scholar 

  • Baddeley, A. D. (2000). The episodic buffer: a new component for working memory? Trends in Cognitive Sciences, 4, 417–423. doi:10.1016/S1364-6613(00)01538-2.

    Article  PubMed  Google Scholar 

  • Baddeley, A. D. (2001). The magic number and the episodic buffer. Behavioral and Brain Sciences, 24, 117–118. doi:10.1017/S0140525X01253928.

    Article  Google Scholar 

  • Baddeley, A. D. (2003). Double dissociations: not magic, but still useful. Cortex, 39, 129–131. doi:10.1016/S0010-9452(08)70082-0.

    Article  PubMed  Google Scholar 

  • Baddeley, A. D., Emslie, H., Kolodny, J., & Duncan, J. (1998). Random generation and the executive control of working memory. The Quarterly Journal of Experimental Psychology, 51A(4), 819–852. doi:10.1080/027249898391413.

    Google Scholar 

  • Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. Bower (Ed.), Recent advances in learning and motivation (vol. 8, (pp. 47–89)). New York: Academic.

    Google Scholar 

  • Baddeley, A. D., Lewis, V., & Vallar, G. (1984). Exploring the articulatory loop. The Quarterly Journal of Experimental Psychology, 36A, 233–252.

    Google Scholar 

  • Baizer, J. S., Ungerleider, L. G., & Desimone, R. (1991). Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. Journal of Neuroscience, 11, 168–190.

    PubMed  CAS  Google Scholar 

  • Bak, T. H., Caine, D., Hearn, V. C., & Hodges, J. R. (2006). Visuospatial functions in atypical parkinsonian syndromes. Journal of Neurology, Neurosurgery and Psychiatry, 77, 454–456. doi:10.1136/jnnp.2005.068239.

    Article  CAS  Google Scholar 

  • Bak, T. H., Crawford, L. M., Hearn, V. C., Mathuranath, P. S., & Hodges, J. R. (2005). Subcortical dementia revisited: similarities and differences in cognitive function between progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and multiple system atrophy (MSA). Neurocase, 11(4), 268–273. doi:10.1080/13554790590962997.

    Article  PubMed  CAS  Google Scholar 

  • Barrett, A. M., Crucian, G. P., Schwartz, R., Nallamshetty, H., & Heilman, K. M. (2001). Seeing trees but not the forest: limited perception of large configurations in PD. Neurology, 56(6), 724–729.

    PubMed  CAS  Google Scholar 

  • Beck, P. D., & Kaas, J. H. (1999). Cortical connections of the dorsomedial visual area in old world macaque monkeys. Journal of Comparative Neurology, 406, 487–502. doi:10.1002/(SICI)1096-9861(19990419)406:4<487::AID-CNE6>3.0.CO;2-B.

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw, J. M., Saling, M., Anderson, V., Hopwood, M., & Brodtmann, A. (2006). Higher cortical deficits influence attentional processing in dementia with Lewy bodies, relative to patients with dementia of the Alzheimer's type and controls. Journal of Neurology, Neurosurgery and Psychiatry, 77, 1129–1135. doi:10.1136/jnnp.2006.090183.

    Article  CAS  Google Scholar 

  • Brandimonte, M. A., Hitch, G. J., & Bishop, D. V. M. (1992). Influence of short-term memory codes on visual processing: evidence from image transformation tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 157–165. doi:10.1037/0278-7393.18.1.157.

    Article  PubMed  CAS  Google Scholar 

  • Bronnick, K., Emre, M., Lane, R., Tekin, S., & Aarsland, D. (2007). Profile of cognitive impairment in dementia associated with Parkinson’s disease compared with Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 78, 1064–1068. doi:10.1136/jnnp.2006.108076.

    Article  Google Scholar 

  • Butter, C. M., Trobe, J. D., Foster, N. L., & Berent, S. (1996). Visual-spatial deficits explain visual symptoms in Alzheimer’s disease. American Journal of Ophthalmology, 122(1), 97–105.

    PubMed  CAS  Google Scholar 

  • Calderon, J., Perry, R. J., Erzinclioglu, S. W., Berrios, G. E., Dening, T. R., & Hodges, J. R. (2001). Perception, attention, and working memory are disproportionately impaired in dementia with Lewy bodies compared with Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 70, 157–164. doi:10.1136/jnnp.70.2.157.

    Article  CAS  Google Scholar 

  • Carpenter, P. A., & Eisenberg, P. (1978). Mental rotation and the frame of reference in blind and sighted individuals. Perception and Psychophysics, 23, 117–124.

    PubMed  CAS  Google Scholar 

  • Chalupa, L. M., & Werner, J. S. (Eds.). (2004a). The visual neurosciences (Vol. 1). Cambridge: MIT.

  • Chalupa, L. M., & Werner, J. S. (Eds.). (2004b). The Visual Neurosciences (Vol. 2). Cambridge: MIT.

  • Cocchini, G., Logie, R. H., Della Sala, S., MacPherson, S. E., & Baddeley, A. D. (2002). Concurrent performance of two memory tasks: evidence for domain-specific working memory systems. Memory & Cognition, 30, 1086–1095.

    Google Scholar 

  • Collerton, D., Burn, D., McKeith, I., & O’Brien, J. (2003). Systematic review and meta-analysis show that dementia with Lewy bodies is a visual-perceptual and attentional-executive dementia. Dementia and Geriatric Cognitive Disorders, 16, 229–237. doi:10.1159/000072807.

    Article  PubMed  Google Scholar 

  • Cornoldi, C., & Vecchi, T. (2003). Visual-spatial working memory and individual differences. East Sussex: Psychology Press.

    Google Scholar 

  • Coslett, H. B., & Saffran, E. (1991). Simultanagnosia: to see but not to see. Brain, 114, 1523–1545. doi:10.1093/brain/114.4.1523.

    Article  PubMed  Google Scholar 

  • Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G., & Haxby, J. V. (1998). An area specialized for spatial working memory in human frontal cortex. Science, 279, 1347–1351. doi:10.1126/science.279.5355.1347.

    Article  PubMed  CAS  Google Scholar 

  • Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1996). Object and spatial visual working memory activate separate neural systems in human cortex. Cerebral Cortex, 6, 39–49. doi:10.1093/cercor/6.1.39.

    Article  PubMed  CAS  Google Scholar 

  • Cowan, N. (1994). Mechanisms of verbal short-term memory. Current Directions in Psychological Science, 6, 185–189. doi:10.1111/1467-8721.ep10770705.

    Article  Google Scholar 

  • Cowan, N. (1995). Attention and memory: An integrated framework. Oxford: Oxford University Press.

    Google Scholar 

  • Cowan, N. (1999). An embedded-processes model of working memory. In A. Miyake, & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101). Cambridge: Cambridge University Press.

    Google Scholar 

  • Cowan, N. (2001). The magical number four in short-term memory: a reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114. doi:10.1017/S0140525X01003922.

    Article  PubMed  CAS  Google Scholar 

  • Cowan, N. (2005). Working memory capacity. New York: Psychology Press.

    Book  Google Scholar 

  • D’Esposito, M., Postle, B. R., Ballard, D., & Lease, J. (1999). Maintenance versus manipulation of information held in working memory: an event-related fMRI study. Brain and Cognition, 41, 66–86. doi:10.1006/brcg.1999.1096.

    Article  PubMed  Google Scholar 

  • D’Esposito, M., Zarahn, E., & Aguirre, G. K. (1999). Event-related functional MRI: Implications for cognitive psychology. Psychological Bulletin, 125(1), 155–164. doi:10.1037/0033-2909.125.1.155.

    Article  PubMed  Google Scholar 

  • Davidsdottir, S., Cronin-Golomb, A., & Lee, A. (2005). Visual and spatial symptoms in Parkinson's disease. Vision Research, 45, 1285–1296. doi:10.1016/j.visres.2004.11.006.

    Article  PubMed  Google Scholar 

  • Davis, G. (2000). There is no four-object limit on attention. Behavioral and Brain Sciences, 24, 119–120. doi:10.1017/S0140525X01273920.

    Article  Google Scholar 

  • Davis, G., & Holmes, A. (2005). The capacity of visual short-term memory is not a fixed number of objects. Memory & Cognition, 33(2), 185–195.

    Google Scholar 

  • Delvenne, J. (2005). The capacity of visual short-term memory within and between hemifields. Cognition, 96, B79–B88. doi:10.1016/j.cognition.2004.12.007.

    Article  PubMed  Google Scholar 

  • Dent, K., & Smyth, M. M. (2006). Capacity limitations and representational shifts in spatial short-term memory. Visual Cognition, 13(5), 529–572. doi:10.1080/13506280444000760.

    Article  Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Reviews Neuroscience, 18, 193–222. doi:10.1146/annurev.ne.18.030195.001205.

    Article  CAS  Google Scholar 

  • Downing, P., Liu, J., & Kanwisher, N. (2001). Testing cognitive models of visual attention with fMRI and MEG. Neuropsychologia, 39, 1329–1342. doi:10.1016/S0028-3932(01)00121-X.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 113(4), 501–517. doi:10.1037/0096-3445.113.4.501.

    Article  CAS  Google Scholar 

  • Engle, R. W., & Oransky, N. (1999). Multi-store versus dynamic models of temporary storage memory. In R. J. Sternberg (Ed.), The nature of cognition (pp. 515–555). Cambridge: MIT.

    Google Scholar 

  • Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102(2), 211–245. doi:10.1037/0033-295X.102.2.211.

    Article  PubMed  CAS  Google Scholar 

  • Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47. doi:10.1093/cercor/1.1.1-a.

    Article  PubMed  CAS  Google Scholar 

  • Finke, K., Bublak, P., & Zihl, J. (2006). Visual spatial and visual pattern working memory: neuropsychological evidence for a differential role of left and right dorsal visual brain. Neuropsychologia, 33, 649–661. doi:10.1016/j.neuropsychologia.2005.06.015.

    Article  Google Scholar 

  • Frick, R. W. (1990). The visual suffix effect in tests of the visual short-term store. Bulletin of the Psychonomic Society, 28, 101–104.

    Google Scholar 

  • Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1991). Neuronal activity related to saccadic eye movements in the monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology, 65(6), 1464–1483.

    PubMed  CAS  Google Scholar 

  • Fuster, J. M. (1990). Behavioral electrophysiology of the prefrontal cortex of the primate. Progress in Brain Research, 85, 313–323. doi:10.1016/S0079-6123(08)62687-4.

    Article  PubMed  CAS  Google Scholar 

  • Gainotti, G., Parlato, V., Monteleone, D., & Carlomagno, S. (1992). Neuropsychological markers of dementia on visual-spatial tasks: a comparison between Alzheimer’s type and vascular forms of dementia. Journal of Clinical and Experimental Neuropsychology, 14(2), 239–252. doi:10.1080/01688639208402826.

    Article  PubMed  CAS  Google Scholar 

  • Gathercole, S. E., & Baddeley, A. D. (1993). Working memory and language. Hove: Erlbaum.

    Google Scholar 

  • Gazzaniga, M. S. (Ed.). (2004). The cognitive neurosciences (3rd ed.). Cambridge: MIT.

  • Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2002). Cognitive neuroscience: The biology of the mind (2nd ed.). New York: W. W. Norton & Company.

    Google Scholar 

  • Gegenfurtner, K. R., Kiper, D. C., & Levitt, J. B. (1997). Functional properties of neurons in macaque area V3. Journal of Neurophysiology, 77, 1906–1923.

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic, P. S. (1990). Cellular and circuit basis of working memory in prefrontal cortex of nonhuman primates. Progress in Brain Research, 85, 325–335. doi:10.1016/S0079-6123(08)62688-6.

    Article  PubMed  CAS  Google Scholar 

  • Haxby, J. V., Grady, C. L., Horwitz, B., Ungerleider, L. G., Mishkin, M., Carson, R. E., et al. (1991). Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proceedings of the National Academy of Sciences U.S.A., 88, 1621–1625. doi:10.1073/pnas.88.5.1621.

    Article  CAS  Google Scholar 

  • Haxby, J. V., Petit, L., Ungerleider, L. G., & Courtney, S. M. (2000). Distinguishing the functional roles of multiple regions in distributed neural systems for visual working memory. NeuroImage, 11, 145–156. doi:10.1006/nimg.1999.0527.

    Article  PubMed  CAS  Google Scholar 

  • Healy, A. F., & McNamara, D. S. (1996). Verbal learning and memory: does the modal model still work? Annual Review of Psychology, 47, 143–172. doi:10.1146/annurev.psych.47.1.143.

    Article  PubMed  CAS  Google Scholar 

  • Hecker, R., & Mapperson, B. (1997). Dissociation of visual and spatial processing in working memory. Neuropsychologia, 35, 599–603. doi:10.1016/S0028-3932(96)00106-6.

    Article  PubMed  CAS  Google Scholar 

  • Hegarty, M., Shah, P., & Miyake, A. (2000). Constraints on using the dual-task methodology to specify the degree of central executive involvement in cognitive tasks. Memory & Cognition, 28, 376–385.

    CAS  Google Scholar 

  • James, W. (1895). The principles of psychology. New York: Holt.

    Google Scholar 

  • Jiang, Y., Olson, I. R., & Chun, M. M. (2000). Organization of visual short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 683–702. doi:10.1037/0278-7393.26.3.683.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D. M., Macken, W. J., & Nicholls, A. P. (2004). The phonological store of working memory: is it phonological and is it a store? Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 656–674. doi:10.1037/0278-7393.30.3.656.

    Article  PubMed  Google Scholar 

  • Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: a latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology, 133(3), 189–217.

    PubMed  Google Scholar 

  • Kemps, E. (1999). Effects of complexity on visuo-spatial working memory. European Journal of Cognitive Psychology, 11, 335–356. doi:10.1080/713752320.

    Article  Google Scholar 

  • Kemps, E. (2001). Complexity effects in visuo-spatial working memory: implications for the role of long-term memory. Memory, 9(1), 13–27. doi:10.1080/09658210042000012.

    Article  PubMed  CAS  Google Scholar 

  • Kintsch, W., & Buschke, H. (1964). Homophones and synonyms in short-term memory. Journal of Experimental Psychology, 80, 403–407. doi:10.1037/h0027477.

    Article  Google Scholar 

  • Klauer, K. C., & Zhao, Z. (2004). Double dissociations in visual and spatial short-term memory. Journal of Experimental Psychology, 133(3), 355–381.

    PubMed  Google Scholar 

  • Kohler, S., Kapur, S., Moscovitch, M., Winocure, G., & Houle, S. (1995). Dissociation of pathways for object and spatial vision: a PET study in humans. NueroReport, 6, 1865–1868.

    Article  CAS  Google Scholar 

  • Kumar, A., & Jiang, Y. (2005). Visual short-term memory for sequential arrays. Memory & Cognition, 33(3), 488–498.

    Google Scholar 

  • Levine, D. N., Warach, J., & Farah, M. J. (1985). Two visual systems in mental imagery: dissociation of “what” and “where” in imagery disorders due to bilateral posterior cerebral lesions. Neurology, 35(7), 1010–1018.

    PubMed  CAS  Google Scholar 

  • Logie, R. H. (1986). Visuo-spatial processing in working memory. The Quarterly Journal of Experimental Psychology, 38A, 229–247.

    Google Scholar 

  • Logie, R. H. (1989). Characteristics of visual short-term memory. European Journal of Cognitive Psychology, 1, 275–284. doi:10.1080/09541448908403088.

    Article  Google Scholar 

  • Logie, R. H. (1995). Visuo-spatial working memory. East Sussex: Erlbaum.

    Google Scholar 

  • Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281. doi:10.1038/36846.

    Article  PubMed  CAS  Google Scholar 

  • Matlin, M. W. (2003). Cognition (5th ed.). New York: Wiley.

    Google Scholar 

  • Maunsell, J. H., & McAdams, C. J. (2000). Effects of attention on neuronal response properties in visual cortex. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences (pp. 290–305). Cambridge: MIT.

    Google Scholar 

  • Maunsell, J. H., Nealey, T. A., & Depriest, D. D. (1990). Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. Journal of Neuroscience, 10, 3323–3334.

    PubMed  CAS  Google Scholar 

  • Middleton, F. A., & Strick, P. L. (2000). Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain and Cognition, 42(2), 183–200. doi:10.1006/brcg.1999.1099.

    Article  PubMed  CAS  Google Scholar 

  • Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review, 63, 81–97. doi:10.1037/h0043158.

    Article  PubMed  CAS  Google Scholar 

  • Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: two cortical pathways. Trends in Neuroscience, 6, 414–417. doi:10.1016/0166-2236(83)90190-X.

    Article  Google Scholar 

  • Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001). How are visuospatial working memory, executive functioning and spatial abilities related? A latent-variable analysis. Journal of Experimental Psychology, 130(4), 621–540.

    PubMed  CAS  Google Scholar 

  • Miyake, A., & Shah, P. (1999). Toward unified theories of working memories: Emerging general consensus, unresolved theoretical issues, and future research directions. In A. Miyake, & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 442–481). Cambridge: Cambridge University Press.

    Google Scholar 

  • Mizumori, S. J. Y., Yeshenko, O., Gill, K. M., & Davis, D. M. (2004). Parallel processing across neural systems: implications for a multiple memory system hypothesis. Neurobiology of Learning and Memory, 82, 278–298. doi:10.1016/j.nlm.2004.07.007.

    Article  PubMed  Google Scholar 

  • Morey, C. C., & Cowan, N. (2004). When visual and verbal memories conflict: evidence of cross-domain interference in working memory. Psychonomic Bulletin & Review, 11, 296–301.

    Google Scholar 

  • Morris, N. (1989). Spatial monitoring in visual working memory. British Journal of Psychology, 80, 333–349.

    PubMed  Google Scholar 

  • Mosimann, U. P., Mather, G., Wesnes, K. A., O’Brien, J. T., Burn, D. J., & McKeith, I. G. (2004). Visual perception in Parkinson disease dementia and dementia with Lewy bodies. Neurology, 63, 2091–2096.

    PubMed  CAS  Google Scholar 

  • Motter, B. C. (1993). Focal attention produces spatially selective processing in visual cortical areas, V1, V2 and V4 in the presence of competing stimuli. Journal of Neurophysiology, 70(3), 909–919.

    PubMed  CAS  Google Scholar 

  • Nairne, J. S. (2002). Remembering over the short-term: the case against the standard model. Annual Review of Psychology, 53, 53–81. doi:10.1146/annurev.psych.53.100901.135131.

    Article  PubMed  Google Scholar 

  • Naveh-Benjamin, M. (1987). Coding of spatial location information: an automatic process? Journal of Experimental Psychology: Learning, Memory, and Cognition, 13(4), 595–605. doi:10.1037/0278-7393.13.4.595.

    Article  PubMed  CAS  Google Scholar 

  • Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. J. Davidson, G. E. Schwarts, & D. Shapiro (Eds.), Consciousness and self-regulation: Advances in research and theory (vol. 4, (pp. 1–18)). New York: Plenum.

    Google Scholar 

  • O’Craven, K. M., Downing, P., & Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature, 401, 584–587. doi:10.1038/44134.

    Article  PubMed  Google Scholar 

  • Oberauer, K. (2002). Access to information in working memory: exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 411–421. doi:10.1037/0278-7393.28.3.411.

    Article  PubMed  Google Scholar 

  • Oram, M. W., & Perrett, D. I. (1996). Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. Journal of Neurophysiology, 76, 109–129.

    PubMed  CAS  Google Scholar 

  • Owen, A. M. (1997). The functional organization of working memory processes within human lateral frontal cortex: the contribution of functional neuroimaging. European Journal of Neuroscience, 9, 1329–1339. doi:10.1111/j.1460-9568.1997.tb01487.x.

    Article  PubMed  CAS  Google Scholar 

  • Owen, A. M., Evans, A. C., & Petrides, M. (1996). Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: a positron emission tomography study. Cereb Cortex, 6(1), 31–38. doi:10.1093/cercor/6.1.31.

    Article  PubMed  CAS  Google Scholar 

  • Owen, A. M., Stern, C. E., Look, R. B., Tracy, I., Rosen, B. R., & Petrides, M. (1998). Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex. Proceedings of the National Academy of Sciences USA, 95, 7721–7726. doi:10.1073/pnas.95.13.7721.

    Article  CAS  Google Scholar 

  • Parmentier, F. B. R., Elford, G., & Maybery, M. (2005). Transitional information in spatial serial memory: Path characteristics affect recall performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(3), 412–427. doi:10.1037/0278-7393.31.3.412.

    Article  PubMed  Google Scholar 

  • Paulesu, E., Frith, C. D., & Frackowiak, R. S. J. (1993). The neural correlates of the verbal component of working memory. Nature, 362, 342–345. doi:10.1038/362342a0.

    Article  PubMed  CAS  Google Scholar 

  • Paulesu, E., Frith, U., Snowling, M., Gallagher, A., Morton, J., Frackowiak, R. S. J., et al. (1996). Is developmental dyslexia a disconnection syndrome? Evidence from PET scanning. Brain, 119, 143–157. doi:10.1093/brain/119.1.143.

    Article  PubMed  Google Scholar 

  • Paxinos, G., & Mai, J. K. (Eds.). (2004). The human nervous system (2nd ed.). San Diego: Elsevier Academic.

  • Phillips, W. A., & Christie, D. F. M. (1977). Interference with visualization. The Quarterly Journal of Experimental Psychology, 29, 637–650. doi:10.1080/14640747708400638.

    Article  PubMed  CAS  Google Scholar 

  • Pickering, S. J. (2001). Cognitive approaches to the fractionation of visuospatial working memory. Cortex, 37, 457–473. doi:10.1016/S0010-9452(08)70587-2.

    Article  PubMed  CAS  Google Scholar 

  • Pickering, S. J., Gathercole, S. E., Hall, M., & Lloyd, S. A. (2001). Development of memory for pattern and path: further evidence for the fractionation of visuo-spatial memory. The Quarterly Journal of Experimental Psychology, 54A, 397–420. doi:10.1080/02724980042000174.

    Google Scholar 

  • Pohl, W. (1973). Dissociation of spatial discrimination deficits following frontal and parietal lesions in monkeys. The Journal of Comparative and Physiological Psychology, 82(2), 227–239. doi:10.1037/h0033922.

    Article  CAS  Google Scholar 

  • Posner, M. I. (1978). Chronometric explorations of mind. Hillsdale: Erlbaum.

    Google Scholar 

  • Postle, B. R., & D’Esposito, M. (1999). “What”-then-“where” in visual working memory: An event-related fMRI study. Journal of Cognitive Neuroscience, 11, 585–597. doi:10.1162/089892999563652.

    Article  PubMed  CAS  Google Scholar 

  • Postle, B. R., D’Esposito, M., & Corkin, S. (2005). Effects of verbal and nonverbal interference on spatial and object working memory. Memory & Cognition, 33, 203–212.

    Google Scholar 

  • Postle, B. R., Stern, C. E., Rosen, B. R., & Corkin, S. (2000). An fMRI investigation of cortical contributions of spatial and nonspatial visual working memory. NeuroImage, 11, 409–423. doi:10.1006/nimg.2000.0570.

    Article  PubMed  CAS  Google Scholar 

  • Postma, A., & DeHaan, E. H. F. (1996). What was where: Memory for object locations. The Quarterly Journal of Experimental Psychology, 49A(1), 178–199. doi:10.1080/027249896392856.

    Google Scholar 

  • Quinn, J. G. (1988). Interference effects in the visuo-spatial sketchpad. In M. Denis, J. Englekamp, & J. T. E. Richardson (Eds.), Cognitive and neuropsychological approaches to mental imagery (pp. 181–189). Amsterdam: Martinus Nijhoff.

    Google Scholar 

  • Quinn, J. G., & McConnell, J. (1996). Irrelevant pictures in visual working memory. The Quarterly Journal of Experimental Psychology, 49A, 200–215. doi:10.1080/027249896392865.

    Google Scholar 

  • Rao, S. C., Rainer, G., & Miller, E. K. (1997). Integration of what and where in the primate prefrontal cortex. Science, 276, 821–824. doi:10.1126/science.276.5313.821.

    Article  PubMed  CAS  Google Scholar 

  • Rensink, R. A. (2002). Change detection. Annual Review of Psychology, 53, 245–277. doi:10.1146/annurev.psych.53.100901.135125.

    Article  PubMed  Google Scholar 

  • Ricciardi, E., Bonino, D., Gentili, C., Sani, L., Pietrini, P., & Vecchi, T. (2006). Neural correlates of spatial working memory in humans: A functional magnetic resonance imaging study comparing visual and tactile processes. Neuroscience, 139, 339–349. doi:10.1016/j.neuroscience.2005.08.045.

    Article  PubMed  CAS  Google Scholar 

  • Riddoch, M. J., Humphreys, G. W., Blott, W., & Hardy, E. (2003). Visual and spatial short-term memory in integrative agnosia. Cognitive Neuropsychology, 20(7), 641–671. doi:10.1080/02643290342000078.

    Article  Google Scholar 

  • Rizzo, M., & Robin, D. A. (1990). Simultanagnosia: a defect of sustained attention yields insights on visual information processing. Neurology, 40, 447–455.

    PubMed  CAS  Google Scholar 

  • Rugg, M. D., & Coles, M. G. H. (1995). Electrophysiology of mind: Event-related brain potentials and cognition. Oxford: Oxford University Press.

    Google Scholar 

  • Salameì, P., & Baddeley, A. D. (1982). Disruption of short-term memory by unattended speech: Implications for the structure of working memory. Journal of Verbal Learning and Verbal Behavior, 21, 150–164. doi:10.1016/S0022-5371(82)90521-7.

    Article  Google Scholar 

  • Salmon, D. P., & Filoteo, J. V. (2007). Neuropsychology of cortical versus subcortical dementia syndromes. Seminars in Neurology, 27(1), 7–21. doi:10.1055/s-2006-956751.

    Article  PubMed  Google Scholar 

  • Sawaguchi, T., & Goldman-Rakic, P. S. (1994). The role of D1-dopamine receptor in working memory: Local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. Journal of Neurophysiology, 71(2), 515–528.

    PubMed  CAS  Google Scholar 

  • Schweickert, R., & Boruff, B. (1986). Short-term memory capacity: magic number of magic spell? Journal of Experimental Psychology: Learning, Memory, and Cognition, 12, 419–425. doi:10.1037/0278-7393.12.3.419.

    Article  PubMed  CAS  Google Scholar 

  • Shen, L., Hu, X., Yacoub, E., & Ugurbil, K. (1999). Neural correlates of visual form and visual spatial processing. Human Brain Mapping, 8, 60–71. doi:10.1002/(SICI)1097-0193(1999)8:1<60::AID-HBM5>3.0.CO;2-6.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, G. J., Albers, R. W., Brady, S. T., & Price, D. L. (Eds.). (2006). Basic Neurochemistry: Molecular, Cellular and Medical Aspects (7th ed.). New York: Elsevier Academic.

  • Simons, D. J. (1996). In sight, out of mind: when object representations fail. Psychological Science, 7, 301–305. doi:10.1111/j.1467-9280.1996.tb00378.x.

    Article  Google Scholar 

  • Singhal, A. (2006). Differentiating between spatial and object-based working memory using complex stimuli: an erp study. International Journal of Neuroscience, 116(12), 1457–1469. doi:10.1080/00207450500514342.

    Article  PubMed  Google Scholar 

  • Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1660. doi:10.1126/science.283.5408.1657.

    Article  PubMed  CAS  Google Scholar 

  • Smith, E. E., Jonides, J., Koeppe, R. A., Awh, E., Schumacher, E., & Minoshima, S. (1995). Spatial versus object working memory: PET investigation. Journal of Cognitive Neuroscience, 7(3), 337–356. doi:10.1162/jocn.1995.7.3.337.

    Article  Google Scholar 

  • Smyth, M. M. (1996). Interference with rehearsal in spatial working memory in the absence of eye movements. The Quarterly Journal of Experimental Psychology, 49A(4), 940–949. doi:10.1080/027249896392379.

    Google Scholar 

  • Smyth, M. M., Pearson, N. A., & Pendleton, L. R. (1988). Movement and working memory: Patterns and positions in space. The Quarterly Journal of Experimental Psychology, 40A, 497–514.

    Google Scholar 

  • Smyth, M. M., & Scholey, K. A. (1994). Interference in spatial immediate memory. Memory & Cognition, 22, 1–13.

    CAS  Google Scholar 

  • Soto, D., & Blanco, M. J. (2004). Spatial attention and object-based attention: a comparison within a single task. Vision Research, 44, 69–81. doi:10.1016/j.visres.2003.08.013.

    Article  PubMed  Google Scholar 

  • Sternberg, R. J. (2003). Cognitive psychology (3rd ed.). New York: Wadsworth.

    Google Scholar 

  • Teasdale, J. D., Dritschel, B. H., Taylor, M. J., Proctor, L., Lloyd, C. A., Nimmo-Smith, I., et al. (1995). Stimulus-independent thought depends on central executive resources. Memory & Cognition, 23, 551–559.

    CAS  Google Scholar 

  • Tiraboschi, P., Salmon, D. P., Hansen, L. A., Hofstetter, R. C., Thal, L. J., & Corey-Bloom, J. (2006). What best differentiates Lewy body from Alzheimer’s disease in early-stage dementia? Brain, 129, 729–735. doi:10.1093/brain/awh725.

    Article  PubMed  Google Scholar 

  • Toms, M., Morris, N., & Foley, P. (1994). Characteristics of visual interference with visuospatial working memory. British Journal of Psychology, 85(1), 131–144.

    PubMed  Google Scholar 

  • Treisman, A. M. (1969). Strategies and models of selective attention. Psychological Review, 76(3), 282–299. doi:10.1037/h0027242.

    Article  PubMed  CAS  Google Scholar 

  • Tresch, M. C., Sinnamon, H. M., & Seamon, J. G. (1993). Double dissociation of spatial and object visual memory: evidence from selective interference in intact human subjects. Neuropsychologia, 31, 211–219. doi:10.1016/0028-3932(93)90085-E.

    Article  PubMed  CAS  Google Scholar 

  • Ungerleider, L. G., Courtney, S. M., & Haxby, J. V. (1998). A neural system for human visual working memory. Proceedings of the National Academy of Sciences U.S.A., 95, 883–890. doi:10.1073/pnas.95.3.883.

    Article  CAS  Google Scholar 

  • Ungerleider, L. G., & Haxby, J. V. (1994). “What” and “where” in the human brain. Current Opinion in Neurobiology, 4, 157–165. doi:10.1016/0959-4388(94)90066-3.

    Article  PubMed  CAS  Google Scholar 

  • Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior. Cambridge: MIT.

    Google Scholar 

  • Van Essen, D. C., Anderson, C. H., & Felleman, D. J. (1992). Information processing in the primate visual system: an integrated systems perspective. Science, 255, 419–423. doi:10.1126/science.1734518.

    Article  PubMed  Google Scholar 

  • Vecera, S. P., & Rizzo, M. (2003). Spatial attention: normal processes and their breakdown. Neurologic Clinics of North America, 21, 575–607.

    Google Scholar 

  • Ventre-Dominey, J., Bailly, A., Lavenne, F., LeBars, D., Mollion, H., Costes, N., et al. (2005). Double dissociation in neural correlates of visual working memory: a PET study. Cognitive Brain Research, 25, 747–759. doi:10.1016/j.cogbrainres.2005.09.004.

    Article  PubMed  CAS  Google Scholar 

  • Viney, W., & King, D. B. (2003). A history of psychology ideas and context (3rd ed.). New York: Pearson Education.

    Google Scholar 

  • Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 92–114. doi:10.1037/0096-1523.27.1.92.

    Article  PubMed  CAS  Google Scholar 

  • Weisman, D., & McKeith, I. (2007). Dementia with Lewy bodies. Seminars in Neurology, 27(1), 42–47. doi:10.1055/s-2006-956754.

    Article  PubMed  Google Scholar 

  • Wickelgren, W. A. (1965). Acoustic similarity and intrusion errors in short-term memory. Journal of Experimental Psychology, 70, 102–108. doi:10.1037/h0022015.

    Article  PubMed  CAS  Google Scholar 

  • Winkler, I., & Cowan, N. (2005). From sensory to long-term memory: evidence from auditory memory reactivation studies. Experimental Psychology, 52(1), 3–20. doi:10.1027/1618-3169.52.1.3.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. T. Baune.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McAfoose, J., Baune, B.T. Exploring Visual–Spatial Working Memory: A Critical Review of Concepts and Models. Neuropsychol Rev 19, 130–142 (2009). https://doi.org/10.1007/s11065-008-9063-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-008-9063-0

Keywords

Navigation