Skip to main content

Advertisement

Log in

Binary Nano-inhalant Formulation of Icariin Enhances Cognitive Function in Vascular Dementia via BDNF/TrkB Signaling and Anti-inflammatory Effects

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Vascular dementia (VaD) has a serious impact on the patients’ quality of life. Icariin (Ica) possesses neuroprotective potential for treating VaD, yet its oral bioavailability and blood–brain barrier (BBB) permeability remain challenges. This research introduced a PEG–PLGA-loaded chitosan hydrogel-based binary formulation tailored for intranasal delivery, enhancing the intracerebral delivery efficacy of neuroprotective agents. The formulation underwent optimization to facilitate BBB crossing, with examinations conducted on its particle size, morphology, drug-loading capacity, in vitro release, and biodistribution. Using the bilateral common carotid artery occlusion (BCCAO) rat model, the therapeutic efficacy of this binary formulation was assessed against chitosan hydrogel and PEG–PLGA nanoparticles loaded with Ica. Post-intranasal administration, enhanced cognitive function was evident in chronic cerebral hypoperfusion (CCH) rats. Further mechanistic evaluations, utilizing immunohistochemistry (IHC), RT-PCR, and ELISA, revealed augmented transcription of synaptic plasticity-associated proteins like SYP and PSD-95, and a marked reduction in hippocampal inflammatory markers such as IL-1β and TNF-α, highlighting the formulation's promise in alleviating cognitive impairment. The brain-derived neurotrophic factor (BDNF)/tropomyosin related kinase B (TrkB) pathway was activated significantly in the binary formulation compared with the other two. Our study demonstrates that the intranasal application of chitosan hydrogel loaded with Ica-encapsulated PEG–PLGA could effectively deliver Ica into the brain and enhance its neuroprotective effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Abbreviations

AD:

Alzheimer’s disease

BBB:

Blood brain barrier

BCCAO:

Bilateral common carotid artery occlusion

BDNF:

Brain-derived neurotrophic factor

CaMKII:

Ca2+/calmodulin-dependent protein kinase II

CCH:

Chronic cerebral hypoperfusion

CREB:

cAMP-response element binding protein

CSF:

Cerebrospinal fluid

DLS:

Dynamic light scattering

DMF:

N,N-dimethylformamide

EA:

Ethyl acrylate

EF:

Epimedium flavonoid

ELISA:

Enzyme-linked immunosorbent assay

ER:

Endoplasmic reticulum

ERK:

Extracellular regulated protein kinases

FDA:

Food and Drug Administration

Gel:

Hydrogel

HE:

Hematoxylin and eosin

HPLC:

High performance liquid chromatography

Ica:

Icariin

Ica gel:

Ica chitosan hydrogel

Ica ig:

Ica Intragastric administration

Ica NPs and gel:

Ica-PEG–PLGA NPs and chitosan hydrogel hydrogel

Ica NPs group:

Ica-PEG–PLGA NPs

IHC:

immunohistochemistry

IL-1β/IL-1b:

Interleukin 1β

IL6:

Interleukin 6

LTP:

Long-term potentiation

MWM:

Morris water maze

NMDA:

N-methyl d-aspartate

NMDARs:

N-methyl D-aspartate receptors

NPs:

nanoparticles

GluN2B:

A main subunit of the NMDA receptor

NSCs:

Neural stem cells

PBS:

Phosphate buffered saline

PDI:

Polydispersity Index

PEG–PLGA:

Poly(ethyleneglycol)–poly(lactic-co-glycolic acid)

P-gp:

P-glycoprotein

PSD-95:

Post-synaptic density 95

PVA:

Polyvinyl alcohol

RCTs:

Randomized controlled trails

RT-PCR:

Reverse transcription-polymerase chain reaction

SD:

Sprague Dawley

ß-GP:

β-Glycerophosphate

SYP:

Synaptophysin

TB:

Toluidine blue

TEM:

Transmission electron microscopy

TFE:

Epimedium koreanum

TJ:

Tight junction

TNF-α:

Tumor necrosis factor-α

TrkB:

Tropomyosin receptor kinas B

VaD:

Vascular dementia

VCI:

Vascular cognitive impairment

References

  1. Du SQ, Wang XR, Xiao LY, Tu JF, Zhu W, He T, Liu CZ (2017) Molecular mechanisms of vascular dementia: what can be learned from animal models of chronic cerebral hypoperfusion? Mol Neurobiol 54(5):3670–3682. https://doi.org/10.1007/s12035-016-9915-1

    Article  CAS  PubMed  Google Scholar 

  2. Yang Y, Zhao X, Zhu Z, Zhang L (2022) Vascular dementia: a microglia’s perspective. Ageing Res Rev 81:101734. https://doi.org/10.1016/j.arr.2022.101734

    Article  CAS  PubMed  Google Scholar 

  3. Tian Z, Ji X, Liu J (2022) Neuroinflammation in vascular cognitive impairment and dementia: current evidence, advances, and prospects. Int J Mol Sci 23(11):6224. https://doi.org/10.3390/ijms23116224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhou C, Sun P, Xu Y, Chen Y, Huang Y, Hamblin MH, Foley L, Hitchens TK, Li S, Yin KJ (2022) Genetic deficiency of MicroRNA-15a/16-1 confers resistance to neuropathological damage and cognitive dysfunction in experimental vascular cognitive impairment and dementia. Adv Sci 9(17):e2104986. https://doi.org/10.1002/advs.202104986

    Article  CAS  Google Scholar 

  5. Zanon Zotin MC, Sveikata L, Viswanathan A, Yilmaz P (2021) Cerebral small vessel disease and vascular cognitive impairment: from diagnosis to management. Curr Opin Neurol 34(2):246–257. https://doi.org/10.1097/WCO.0000000000000913

    Article  PubMed  PubMed Central  Google Scholar 

  6. Montine TJ, Bukhari SA, White LR (2021) Cognitive impairment in older adults and therapeutic strategies. Pharmacol Rev 73:152–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rundek T, Tolea M, Ariko T et al (2022) Vascular cognitive impairment (VCI). Neurotherapeutics. 19:68–88

    Article  PubMed  Google Scholar 

  8. Bai X, Zhang M (2021) Traditional Chinese medicine intervenes in vascular dementia: traditional medicine brings new expectations. Front Pharmacol 12:689625. https://doi.org/10.3389/fphar.2021.689625

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ke L, Duan X, Cui J et al (2023) Research progress on the extraction technology and activity study of epimedium polysaccharides. Carbohydr Polym 306:120602

    Article  CAS  PubMed  Google Scholar 

  10. Niu HM, Ma DL, Wang MY et al (2020) Epimedium flavonoids protect neurons and synapses in the brain via activating NRG1/ErbB4 and BDNF/Fyn signaling pathways in a chronic cerebral hypoperfusion rat model. Brain Res Bull 162:132–140. https://doi.org/10.1016/j.brainresbull.2020.06.012

    Article  CAS  PubMed  Google Scholar 

  11. Chen FJ, Liu B, Wu Q et al (2019) Icariin delays brain aging in senescence-accelerated mouse prone 8 (SAMP8) model via inhibiting autophagy. J Pharmacol Exp Ther 369:121–128. https://doi.org/10.1124/jpet.118.253310

    Article  CAS  PubMed  Google Scholar 

  12. Ma D, Zhao L, Zhang L et al (2021) Icariin promotes survival, proliferation, and differentiation of neural stem cells in vitro and in a rat model of Alzheimer’s disease. Stem Cells Int 2021:9974625. https://doi.org/10.1155/2021/9974625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fu X, Li S, Zhou S et al (2018) Stimulatory effect of icariin on the proliferation of neural stem cells from rat hippocampus. BMC Complement Altern Med 18:1–9

    Article  Google Scholar 

  14. Wang Y, Shang C, Zhang Y et al (2023) Regulatory mechanism of icariin in cardiovascular and neurological diseases. Biomed Pharmacotherapy 158:114156

    Article  CAS  Google Scholar 

  15. Li F, Zhang Y, Lu X et al (2019) Icariin improves the cognitive function of APP/PS1 mice via suppressing endoplasmic reticulum stress. Life Sci 234:116739. https://doi.org/10.1016/j.lfs.2019.116739

    Article  CAS  PubMed  Google Scholar 

  16. Ramezani M, Meymand AZ, Khodagholi F et al (2023) A role for flavonoids in the prevention and/or treatment of cognitive dysfunction, learning, and memory deficits: a review of preclinical and clinical studies. Nutr Neurosci 26:156–172

    Article  CAS  PubMed  Google Scholar 

  17. Szabó R, Rácz CP, Dulf FV (2022) Bioavailability improvement strategies for icariin and its derivates: a review. Int J Mol Sci 23:7519

    Article  PubMed  PubMed Central  Google Scholar 

  18. Khezri MR, Ghasemnejad-Berenji M (2022) Icariin: a potential neuroprotective agent in Alzheimer’s disease and Parkinson’s disease. Neurochem Res 47:2954–2962

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Wang Q-S, Cui Y-L et al (2012) Changes in the intestinal absorption mechanism of icariin in the nanocavities of cyclodextrins. Int J Nanomed. https://doi.org/10.2147/IJN.S33014

    Article  Google Scholar 

  20. Wang J, Kong L, Guo R-B et al (2022) Multifunctional icariin and tanshinone IIA co-delivery liposomes with potential application for Alzheimer’s disease. Drug Deliv 29:1648–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li X, Li S, Ma C et al (2022) Preparation of baicalin-loaded ligand-modified nanoparticles for nose-to-brain delivery for neuroprotection in cerebral ischemia. Drug Deliv 29:1282–1298. https://doi.org/10.1080/10717544.2022.2064564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vaz G, Clementino A, Mitsou E et al (2022) In vitro evaluation of curcumin- and quercetin-loaded nanoemulsions for intranasal administration: effect of surface charge and viscosity. Pharmaceutics. https://doi.org/10.3390/pharmaceutics14010194

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bonaccorso A, Gigliobianco MR, Pellitteri R et al (2020) Optimization of curcumin nanocrystals as promising strategy for nose-to-brain delivery application. Pharmaceutics. https://doi.org/10.3390/pharmaceutics12050476

    Article  PubMed  PubMed Central  Google Scholar 

  24. Agrawal M, Saraf S, Saraf S et al (2018) Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release 281:139–177. https://doi.org/10.1016/j.jconrel.2018.05.011

    Article  CAS  PubMed  Google Scholar 

  25. Kozlovskaya L, Abou-Kaoud M, Stepensky D (2014) Quantitative analysis of drug delivery to the brain via nasal route. J Control Release 189:133–140. https://doi.org/10.1016/j.jconrel.2014.06.053

    Article  CAS  PubMed  Google Scholar 

  26. Nagaraja S, Basavarajappa GM, Karnati RK et al (2021) Ion-triggered in situ gelling nanoemulgel as a platform for nose-to-brain delivery of small lipophilic molecules. Pharmaceutics. https://doi.org/10.3390/pharmaceutics13081216

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chung EP, Cotter JD, Prakapenka AV et al (2020) Targeting small molecule delivery to the brain and spinal cord via intranasal administration of rabies virus glycoprotein (RVG29)-modified PLGA nanoparticles. Pharmaceutics. https://doi.org/10.3390/pharmaceutics12020093

    Article  PubMed  PubMed Central  Google Scholar 

  28. Revdekar A, Shende P (2021) Block copolymers in Alzheimer’s disease therapy: a perceptive to revolutionize biomaterials. J Control Release. 340:271–281. https://doi.org/10.1016/j.jconrel.2021.11.007

    Article  CAS  PubMed  Google Scholar 

  29. Cunha S, Swedrowska M, Bellahnid Y et al (2022) Thermosensitive in situ hydrogels of rivastigmine-loaded lipid-based nanosystems for nose-to-brain delivery: characterisation, biocompatibility, and drug deposition studies. Int J Pharm. 620:121720. https://doi.org/10.1016/j.ijpharm.2022.121720

    Article  CAS  PubMed  Google Scholar 

  30. Yu S, Xu X, Feng J et al (2019) Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int J Pharm 560:282–293

    Article  CAS  PubMed  Google Scholar 

  31. Colucci-D’Amato L, Speranza L, Volpicelli F (2020) Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int J Mol Sci 21(20):7777. https://doi.org/10.3390/ijms21207777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tejeda GS, Díaz-Guerra M (2017) Integral characterization of defective BDNF/TrkB signalling in neurological and psychiatric disorders leads the way to new therapies. Int J Mol Sci 18(2):268. https://doi.org/10.3390/ijms18020268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leal G, Comprido D, Duarte CB (2014) BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology 76:639–656. https://doi.org/10.1016/j.neuropharm.2013.04.00

    Article  CAS  PubMed  Google Scholar 

  34. Arévalo JC, Deogracias R (2023) Mechanisms controlling the expression and secretion of BDNF. Biomolecules 13(5):789. https://doi.org/10.3390/biom13050789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luo H, Xiang Y, Qu X, Liu H, Liu C, Li G, Han L, Qin X (2019) Apelin-13 suppresses neuroinflammation against cognitive deficit in a streptozotocin-induced rat model of Alzheimer’s disease through activation of BDNF-TrkB signaling pathway. Front Pharmacol 10:395. https://doi.org/10.3389/fphar.2019.00395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Khayatan D, Razavi SM, Arab ZN, Niknejad AH, Nouri K, Momtaz S, Gumpricht E, Jamialahmadi T, Abdolghaffari AH, Barreto GE, Sahebkar A (2022) Protective effects of curcumin against traumatic brain injury. Biomed Pharmacotherapy 154:113621. https://doi.org/10.1016/j.biopha.2022.113621

    Article  CAS  Google Scholar 

  37. Su Y, Sun B, Gao X et al (2020) Chitosan hydrogel doped with PEG-PLA nanoparticles for the local delivery of miRNA-146a to treat allergic rhinitis. Pharmaceutics. https://doi.org/10.3390/pharmaceutics12100907

    Article  PubMed  PubMed Central  Google Scholar 

  38. Moya-Alvarado G, Guerra MV, Tiburcio R, Bravo E, Bronfman FC (2022) The Rab11-regulated endocytic pathway and BDNF/TrkB signaling: roles in plasticity changes and neurodegenerative diseases. Neurobiol Dis 171:105796. https://doi.org/10.1016/j.nbd.2022.105796

    Article  CAS  PubMed  Google Scholar 

  39. Langdon KD, Cordova CA, Granter-Button S et al (2018) Executive dysfunction and blockage of brain microvessels in a rat model of vascular cognitive impairment. J Cereb Blood Flow Metab 38:1727–1740. https://doi.org/10.1177/0271678x17739219

    Article  PubMed  Google Scholar 

  40. Tian H, Ding N, Guo M et al (2019) Analysis of learning and memory ability in an Alzheimer’s disease mouse model using the Morris water maze. J Vis Exp. https://doi.org/10.3791/60055

    Article  PubMed  Google Scholar 

  41. Qiu L, Pan W, Luo D et al (2020) Dysregulation of BDNF/TrkB signaling mediated by NMDAR/Ca(2+)/calpain might contribute to postoperative cognitive dysfunction in aging mice. J Neuroinflamm 17:23. https://doi.org/10.1186/s12974-019-1695-x

    Article  CAS  Google Scholar 

  42. Lu Y, Li CJ, Chen C et al (2016) Activation of GABAB2 subunits alleviates chronic cerebral hypoperfusion-induced anxiety-like behaviours: a role for BDNF signalling and Kir3 channels. Neuropharmacology 110:308–321. https://doi.org/10.1016/j.neuropharm.2016.08.007

    Article  CAS  PubMed  Google Scholar 

  43. Wang G, An T, Lei C et al (2022) Antidepressant-like effect of ginsenoside Rb1 on potentiating synaptic plasticity via the miR-134-mediated BDNF signaling pathway in a mouse model of chronic stress-induced depression. J Ginseng Res 46:376–386. https://doi.org/10.1016/j.jgr.2021.03.005

    Article  PubMed  Google Scholar 

  44. Miyanohara J, Kakae M, Nagayasu K et al (2018) TRPM2 channel aggravates CNS inflammation and cognitive impairment via activation of microglia in chronic cerebral hypoperfusion. J Neurosci 38:3520–3533. https://doi.org/10.1523/jneurosci.2451-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zheng Y, Zhu G, He J et al (2019) Icariin targets Nrf2 signaling to inhibit microglia-mediated neuroinflammation. Int Immunopharmacol 73:304–311

    Article  CAS  PubMed  Google Scholar 

  46. Wolters FJ, Ikram MA (2019) Epidemiology of vascular dementia: nosology in a time of epiomics. Arterioscler Thromb Vasc Biol 39:1542–1549

    Article  CAS  PubMed  Google Scholar 

  47. Dichgans M, Leys D (2017) Vascular cognitive impairment. Circ Res 120:573–591

    Article  CAS  PubMed  Google Scholar 

  48. Van Der Flier WM, Skoog I, Schneider JA et al (2018) Vascular cognitive impairment. Nat Rev Dis Primers 4:1–16

    Google Scholar 

  49. Yang T, Sun Y, Lu Z et al (2017) The impact of cerebrovascular aging on vascular cognitive impairment and dementia. Ageing Res Rev 34:15–29

    Article  PubMed  Google Scholar 

  50. Iadecola C, Duering M, Hachinski V et al (2019) Vascular cognitive impairment and dementia: JACC scientific expert panel. J Am Coll Cardiol 73:3326–3344

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhai M, He L, Ju X et al (2015) Icariin acts as a potential agent for preventing cardiac ischemia/reperfusion injury. Cell Biochem Biophys 72:589–597. https://doi.org/10.1007/s12013-014-0506-3

    Article  CAS  PubMed  Google Scholar 

  52. Huang R, Xu Y, Lu X et al (2021) Melatonin protects inner retinal neurons of newborn mice after hypoxia-ischemia. J Pineal Res 71:e12716. https://doi.org/10.1111/jpi.12716

    Article  CAS  PubMed  Google Scholar 

  53. Sanders O, Rajagopal L (2020) Phosphodiesterase inhibitors for Alzheimer’s disease: a systematic review of clinical trials and epidemiology with a mechanistic rationale. J Alzheimers Dis Rep 4:185–215. https://doi.org/10.3233/adr-200191

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lu Q, Zhu H, Liu X et al (2020) Icariin sustains the proliferation and differentiation of Aβ(25–35)-treated hippocampal neural stem cells via the BDNF-TrkB-ERK/Akt signaling pathway. Neurol Res 42:936–945. https://doi.org/10.1080/01616412.2020.1792701

    Article  CAS  PubMed  Google Scholar 

  55. Skaper SD, Facci L, Zusso M et al (2017) Synaptic plasticity, dementia and Alzheimer disease. CNS Neurol Disord Drug Targets 16:220–233. https://doi.org/10.2174/1871527316666170113120853

    Article  CAS  PubMed  Google Scholar 

  56. Català-Solsona J, Miñano-Molina AJ, Rodríguez-Álvarez J (2021) Nr4a2 transcription factor in hippocampal synaptic plasticity, memory and cognitive dysfunction: a perspective review. Front Mol Neurosci 14:287

    Article  Google Scholar 

  57. Buffington SA, Huang W, Costa-Mattioli M (2014) Translational control in synaptic plasticity and cognitive dysfunction. Annu Rev Neurosci 37:17–38. https://doi.org/10.1146/annurev-neuro-071013-014100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shang Y, Wang X, Shang X et al (2016) Repetitive transcranial magnetic stimulation effectively facilitates spatial cognition and synaptic plasticity associated with increasing the levels of BDNF and synaptic proteins in Wistar rats. Neurobiol Learn Mem 134:369–378. https://doi.org/10.1016/j.nlm.2016.08.016

    Article  CAS  PubMed  Google Scholar 

  59. Yao M, Meng M, Yang X et al (2022) POSH regulates assembly of the NMDAR/PSD-95/Shank complex and synaptic function. Cell Rep 39:110642. https://doi.org/10.1016/j.celrep.2022.110642

    Article  CAS  PubMed  Google Scholar 

  60. Wang M, Jiang L, Chen H et al (2019) Levetiracetam protects against cognitive impairment of subthreshold convulsant discharge model rats by activating protein kinase C (PKC)-growth-associated protein 43 (GAP-43)-calmodulin-dependent protein kinase (CaMK) signal transduction pathway. Med Sci Monit 25:4627–4638. https://doi.org/10.12659/msm.913542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rosenberg GA (2017) Extracellular matrix inflammation in vascular cognitive impairment and dementia. Clin Sci (Lond) 131:425–437. https://doi.org/10.1042/cs20160604

    Article  CAS  PubMed  Google Scholar 

  62. Wang X, Zhang B, Xia R et al (2020) Inflammation, apoptosis and autophagy as critical players in vascular dementia. Eur Rev Med Pharmacol Sci 24:9601–9614. https://doi.org/10.26355/eurrev_202009_23048

    Article  PubMed  Google Scholar 

  63. Wu S, Pan B, Tsai S et al (2020) BDNF reverses aging-related microglial activation. J Neuroinflamm 17:210. https://doi.org/10.1186/s12974-020-01887-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial supports from Science and Technology Department of Jilin Province [Grant Number: 20200201467JC].

Funding

This work was supported in part by Science and Technology Department of Jilin Province [Grant Number: 20200201467JC].

Author information

Authors and Affiliations

Authors

Contributions

Writing (original draft), graphics drawing and editing, tissue sample analysis, project administration, data curation and interpretation, T.L.; conceptualization and methodology, S.L.; writing (review and editing revising the manuscript critically for intellectual content), investigation, and data analysis, Y.X.; animal experimentation, X.L.; writing (manuscript revising), manufacturing, and characterization of binary formulation, C.M. and Z.G.; formulation design, project coordination, and funding acquisition, L.Y.; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Lihua Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval and Informed Consent

All animal experiments in this study were conducted in accordance with the protocols of the Laboratory Animal Ethics Committee of the School of Pharmacy, Jilin University (approval Document No.: 20220036). There are currently no alternatives that mimic the nose-to-brain pathway, which is very complex. The experiments in vitro could not fully disclose the delivery efficiency and safety assessment of the formulation in vivo. A total of 120 male Sprague Dawley (SD) rats (12 weeks old) with body weights between 300 to 320 g were housed at a temperature of 22 ± 2℃, a relative humidity of 50 ± 2%, and a 12-h dark light cycle. All the experimental rats took food and drank water as they pleased. In order to minimize rats suffering, the invasive surgeries on rats were performed under anesthesia (intraperitoneal injections with 3% sodium pentobarbital (1.5 mL/kg)). In addition, invasive operations were performed by skilled technicians in order to speed up operations and reduce the size of the surgical area for rats, which maximized the survival rate of rats and reduced the number of rats in the experiments. At the end of the study, the rats were anesthetized by intraperitoneal injection of sodium pentobarbital and then euthanized in a thermostatically controlled dark box filled with 70% CO2. The study has adhered to the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1631 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Li, S., Xiong, Y. et al. Binary Nano-inhalant Formulation of Icariin Enhances Cognitive Function in Vascular Dementia via BDNF/TrkB Signaling and Anti-inflammatory Effects. Neurochem Res (2024). https://doi.org/10.1007/s11064-024-04129-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11064-024-04129-5

Keywords

Navigation