Skip to main content

Advertisement

Log in

Stroke and Distal Organ Damage: Exploring Brain-Kidney Crosstalk

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Stroke and kidney dysfunction represent significant public health challenges, yet the precise mechanisms connecting these conditions and their severe consequences remain unclear. Individuals experiencing chronic kidney disease (CKD) and acute kidney injury (AKI) are at heightened susceptibility to experiencing repeated strokes. Similarly, a reduced glomerular filtration rate is associated with an elevated risk of suffering a stroke. Prior strokes independently contribute to mortality, end-stage kidney disease, and cardiovascular complications, underscoring the pathological connection between the brain and the kidneys. In cases of AKI, various mechanisms, such as cytokine signaling, leukocyte infiltration, and oxidative stress, establish communication between the brain and the kidneys. The bidirectional relationship between stroke and kidney pathologies involves key factors such as uremic toxins, proteinuria, inflammatory responses, decreased glomerular filtration, impairment of the blood-brain barrier (BBB), oxidative stress, and metabolites produced by the gut microbiota. This review examines potential mechanisms of brain-kidney crosstalk underlying stroke and kidney diseases. It holds significance for comprehending multi-organ dysfunction associated with stroke and for formulating therapeutic strategies to address stroke-induced kidney dysfunction and the bidirectional pathological connection between the kidney and stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Jones SP, Baqai K, Clegg A, Georgiou R, Harris C, Holland EJ, Kalkonde Y, Lightbody CE, Maulik PK, Srivastava PM, Pandian JD, Kulsum P, Sylaja PN, Watkins CL, Hackett ML (2022) Stroke in India: a systematic review of the incidence, prevalence, and case fatality. Int J Stroke: Official J Int Stroke Soc 17:132–140

    Article  Google Scholar 

  2. Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, Fisher M, Pandian J, Lindsay P (2022) World Stroke Organization (WSO): global stroke fact sheet 2022. Int J Stroke: Official J Int Stroke Soc 17:18–29

    Article  Google Scholar 

  3. Nakuluri K, Nishad R, Mukhi D, Kumar S, Nakka VP, Kolligundla LP, Narne P, Natuva SSK, Phanithi PB, Pasupulati AK (2019) Cerebral ischemia induces TRPC6 via HIF1α/ZEB2 axis in the glomerular podocytes and contributes to proteinuria. Sci Rep 9:17897

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  4. Tollitt J, Odudu A, Flanagan E, Chinnadurai R, Smith C, Kalra PA (2019) Impact of prior stroke on major clinical outcome in chronic kidney disease: the Salford kidney cohort study. BMC Nephrol 20:432

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lu R, Kiernan MC, Murray A, Rosner MH, Ronco C (2015) Kidney-brain crosstalk in the acute and chronic setting. Nat Rev Nephrol 11:707–719

    Article  CAS  PubMed  Google Scholar 

  6. Masson P, Webster AC, Hong M, Turner R, Lindley RI, Craig JC (2015) Chronic kidney disease and the risk of stroke: a systematic review and meta-analysis. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association -. Eur Ren Association 30:1162–1169

    CAS  Google Scholar 

  7. Li X, Yuan F, Zhou L (2022) Organ crosstalk in Acute kidney Injury: evidence and mechanisms. J Clin Med 11:6637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao Q, Yan T, Chopp M, Venkat P, Chen J (2020) Brain-kidney interaction: renal dysfunction following ischemic stroke. J Cereb Blood flow Metabolism: Official J Int Soc Cereb Blood Flow Metabolism 40:246–262

    Article  CAS  Google Scholar 

  9. Nishi EE, Bergamaschi CT, Campos RR (2015) The crosstalk between the kidney and the central nervous system: the role of renal nerves in blood pressure regulation. Exp Physiol 100:479–484

    Article  PubMed  Google Scholar 

  10. Yang T, Richards EM, Pepine CJ, Raizada MK (2018) The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol 14:442–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Robba C, Battaglini D, Samary CS, Silva PL, Ball L, Rocco PRM, Pelosi P (2020) Ischaemic stroke-induced distal organ damage: pathophysiology and new therapeutic strategies. Intensive Care Med Exp 8(Suppl 1):23

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bai W, Li W, Ning YL, Li P, Zhao Y, Yang N, Jiang YL, Liang ZP, Jiang DP, Wang Y, Zhang M, Zhou YG (2018) Blood glutamate levels are closely related to Acute Lung Injury and Prognosis after Stroke. Front Neurol 8:755

    Article  PubMed  PubMed Central  Google Scholar 

  13. Samuels MA (2007) The brain-heart connection. Circulation 116:77–84

    Article  PubMed  Google Scholar 

  14. Buckley BJR, Harrison SL, Hill A, Underhill P, Lane DA, Lip GYH (2022) Stroke-heart syndrome: incidence and clinical outcomes of Cardiac complications following stroke. Stroke 53:1759–1763

    Article  CAS  PubMed  Google Scholar 

  15. Chen Z, Venkat P, Seyfried D, Chopp M, Yan T, Chen J (2017) Brain-Heart Interaction: Cardiac complications after Stroke. Circul Res 121:451–468

    Article  CAS  Google Scholar 

  16. Huang Y, Wan C, Wu G (2020) Acute kidney injury after a stroke: a PRISMA-compliant meta-analysis. Brain Behav 10:e01722

    Article  PubMed  PubMed Central  Google Scholar 

  17. Antunes-Rodrigues J, de Castro M, Elias LL, Valença MM, McCann SM (2004) Neuroendocrine control of body fluid metabolism. Physiol Rev 84:169–208

    Article  CAS  PubMed  Google Scholar 

  18. Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, Sita G, Racchumi G, Ling L, Pamer EG, Iadecola C, Anrather J (2016) Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat Med 22:516–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peh A, O’Donnell JA, Broughton BRS, Marques FZ (2022) Gut microbiota and their metabolites in stroke: a double-edged Sword. Stroke 53:1788–1801

    Article  CAS  PubMed  Google Scholar 

  20. Lohia S, Vlahou A, Zoidakis J (2022) Microbiome in chronic kidney disease (CKD): an Omics Perspective. Toxins 14:176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Polak JM Brain and gut peptides (1978) Journal of clinical pathology. Supplement (Association Clin Pathologists symposia) 8:68–75

  22. Shulkes AA, Hardy KJ (1979) Peptides of the gut and brain: an introduction. Aust N Z J Surg 49:701–704

    Article  CAS  PubMed  Google Scholar 

  23. Chen K, Luan X, Liu Q, Wang J, Chang X, Snijders AM, Mao JH, Secombe J, Dan Z, Chen JH, Wang Z, Dong X, Qiu C, Chang X, Zhang D, Celniker SE, Liu X (2019) Drosophila histone demethylase KDM5 regulates Social Behavior through Immune Control and Gut Microbiota maintenance. Cell Host Microbe 25:537–552e538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M (2016) Microbial reconstitution reverses maternal Diet-Induced Social and synaptic deficits in offspring. Cell 165:1762–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 108:16050–16055

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Mittal R, Debs LH, Patel AP, Nguyen D, Patel K, O’Connor G, Grati M, Mittal J, Yan D, Eshraghi AA, Deo SK, Daunert S, Liu XZ (2017) Neurotransmitters: the critical modulators regulating gut-brain Axis. J Cell Physiol 232:2359–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Murtomäki K, Joutsa J, Mertsalmi T, Jaakkola E, Mäkinen E, Levo R, Eklund M, Nuuttila S, Pekkonen E, Noponen T, Ihalainen T, Kaasinen V, Scheperjans F (2023) Dopamine transporter binding in the brain is linked to irritable bowel syndrome in Parkinson’s disease. Brain Behav 13:e3097

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, Zhu D, Koya JB, Wei L, Li J, Chen ZS (2022) Microbiota in health and diseases. Signal Transduct Target Therapy 7:135

    Article  Google Scholar 

  29. Kandpal M, Indari O, Baral B, Jakhmola S, Tiwari D, Bhandari V, Pandey RK, Bala K, Sonawane A, Jha HC (2022) Dysbiosis of gut microbiota from the perspective of the Gut-Brain Axis: role in the provocation of neurological disorders. Metabolites 12:1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma M, Wang Y, Fan S, Huang Y, Su X, Lu C (2023) Urolithin A alleviates colitis in mice by improving gut microbiota dysbiosis, modulating Microbial Tryptophan Metabolism, and triggering AhR activation. J Agric Food Chem 71:7710–7722

    Article  CAS  PubMed  Google Scholar 

  31. Han Y, Wang B, Gao H, He C, Hua R, Liang C, Zhang S, Wang Y, Xin S, Xu J (2022) Vagus nerve and underlying impact on the Gut Microbiota-Brain Axis in Behavior and neurodegenerative diseases. J Inflamm Res 15:6213–6230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pluta R, Januszewski S (2023) Gut microbiota neurotransmitters: influence on risk and outcome of ischemic stroke. Neural Regeneration Res 18:1707–1708

    CAS  Google Scholar 

  33. Arya AK, Hu B (2018) Brain-gut axis after stroke. Brain Circulation 4:165–173

    Article  PubMed  PubMed Central  Google Scholar 

  34. Skye SM, Zhu W, Romano KA, Guo CJ, Wang Z, Jia X, Kirsop J, Haag B, Lang JM, DiDonato JA, Tang WHW, Lusis AJ, Rey FE, Fischbach MA, Hazen SL (2018) Microbial Transplantation with Human Gut commensals containing CutC is sufficient to transmit enhanced platelet reactivity and thrombosis potential. Circul Res 123:1164–1176

    Article  CAS  Google Scholar 

  35. Chidambaram SB, Rathipriya AG, Mahalakshmi AM, Sharma S, Hediyal TA, Ray B, Sunanda T, Rungratanawanich W, Kashyap RS, Qoronfleh MW, Essa MM, Song BJ, Monaghan TM (2022) The influence of gut dysbiosis in the Pathogenesis and management of ischemic stroke. Cells 11:1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xia GH, You C, Gao XX, Zeng XL, Zhu JJ, Xu KY, Tan CH, Xu RT, Wu QH, Zhou HW, He Y, Yin J (2019) Stroke dysbiosis index (SDI) in gut Microbiome are Associated with Brain Injury and Prognosis of Stroke. Front Neurol 10:397

    Article  PubMed  PubMed Central  Google Scholar 

  37. Koeth RA, Levison BS, Culley MK, Buffa JA, Wang Z, Gregory JC, Org E, Wu Y, Li L, Smith JD, Tang WHW, DiDonato JA, Lusis AJ, Hazen SL (2014) γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metabol 20:799–812

    Article  CAS  Google Scholar 

  38. Elssner T, Preusser A, Wagner U, Kleber HP (1999) Metabolism of L(-)-carnitine by Enterobacteriaceae under aerobic conditions. FEMS Microbiol Lett 174:295–301

    Article  CAS  PubMed  Google Scholar 

  39. Pugin B, Barcik W, Westermann P, Heider A, Wawrzyniak M, Hellings P, Akdis CA, O’Mahony L (2017) A wide diversity of bacteria from the human gut produces and degrades biogenic amines. Microb Ecol Health Disease 28:1353881

    Article  Google Scholar 

  40. Els T, Bruckmann J, Röhn G, Daffertshofer M, Mönting JS, Ernestus RI, Hennerici M (2001) Spermidine: a predictor for neurological outcome and infarct size in focal cerebral ischemia? Stroke 32:43–46

    Article  CAS  PubMed  Google Scholar 

  41. Zorrilla-Vaca A, Ziai W, Connolly ES Jr., Geocadin R, Thompson R, Rivera-Lara L (2018) Acute kidney Injury following Acute Ischemic Stroke and Intracerebral Hemorrhage: a Meta-analysis of Prevalence Rate and Mortality Risk. Cerebrovasc Dis 45:1–9

  42. Saeed F, Adil MM, Khursheed F, Daimee UA, Branch LA Jr., Vidal GA, Qureshi AI (2014) Acute renal failure is associated with higher death and disability in patients with acute ischemic stroke: analysis of nationwide inpatient sample. Stroke 45:1478–1480

  43. Nadkarni GN, Patel AA, Konstantinidis I, Mahajan A, Agarwal SK, Kamat S, Annapureddy N, Benjo A, Thakar CV (2015) Dialysis requiring Acute kidney Injury in Acute Cerebrovascular Accident Hospitalizations. Stroke 46:3226–3231

    Article  PubMed  Google Scholar 

  44. Gadalean F, Simu M, Parv F, Vorovenci R, Tudor R, Schiller A, Timar R, Petrica L, Velciov S, Gluhovschi C, Bob F, Mihaescu A, Timar B, Spasovski G, Ivan V (2017) The impact of acute kidney injury on in-hospital mortality in acute ischemic stroke patients undergoing intravenous thrombolysis. PLoS ONE 12:e0185589

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yeh SJ, Jeng JS, Tang SC, Liu CH, Hsu SP, Chen CH, Lien LM, Lin HJ, Chen CM, Lin RT, Lee SP, Lin CH, Yeh CH, Sun Y, Sun MH, Yin JH, Lin CC, Wen CP, Tsai LK, Sung FC, Hsu CY (2015) Low estimated glomerular filtration rate is associated with poor outcomes in patients who suffered a large artery atherosclerosis stroke. Atherosclerosis 239:328–334

    Article  CAS  PubMed  Google Scholar 

  46. Bugnicourt JM, Chillon JM, Massy ZA, Canaple S, Lamy C, Deramond H, Godefroy O (2009) High prevalence of intracranial artery calcification in stroke patients with CKD: a retrospective study. Clin J Am Soc Nephrology: CJASN 4:284–290

    Article  Google Scholar 

  47. Lee M, Saver JL, Chang KH, Liao HW, Chang SC, Ovbiagele B (2010) Low glomerular filtration rate and risk of stroke: meta-analysis. BMJ (Clinical Res ed) 341:c4249

    Article  Google Scholar 

  48. Wang HH, Hung SY, Sung JM, Hung KY, Wang JD (2014) Risk of stroke in long-term dialysis patients compared with the general population. Am J Kidney Diseases: Official J Natl Kidney Foundation 63:604–611

    Article  Google Scholar 

  49. Horn JW, Romundstad S, Ellekjær H, Janszky I, Horn J (2020) Low grade albuminuria as a risk factor for subtypes of stroke - the HUNT study in Norway. BMC Neurol 20:170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bobot M, Suissa L, Hak JF, Burtey S, Guillet B, Hache G (2023) Kidney disease and stroke: epidemiology and potential mechanisms of susceptibility. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association -. Eur Ren Association 38:1940–1951

    CAS  Google Scholar 

  51. Vanholder R, Van Laecke S, Glorieux G (2008) What is new in uremic toxicity? Pediatric nephrology. (Berlin Germany) 23:1211–1221

    Article  Google Scholar 

  52. Assem M, Lando M, Grissi M, Kamel S, Massy ZA, Chillon JM, Hénaut L (2018) The impact of Uremic Toxins on Cerebrovascular and Cognitive disorders. Toxins 10:303

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sato E, Tanaka A, Oyama J, Yamasaki A, Shimomura M, Hiwatashi A, Ueda Y, Amaha M, Nomura M, Matsumura D, Nakamura T, Node K (2016) Long-term effects of AST-120 on the progression and prognosis of pre-dialysis chronic kidney disease: a 5-year retrospective study. Heart Vessels 31:1625–1632

    Article  PubMed  Google Scholar 

  54. Liabeuf S, Neirynck N, Drüeke TB, Vanholder R, Massy ZA (2014) Clinical studies and chronic kidney disease: what did we learn recently? Semin Nephrol 34:164–179

    Article  PubMed  Google Scholar 

  55. Hénaut L, Grissi M, Brazier F, Assem M, Poirot-Leclercq S, Lenglet G, Boudot C, Avondo C, Boullier A, Choukroun G, Massy ZA, Kamel S, Chillon JM (2019) Cellular and molecular mechanisms associated with ischemic stroke severity in female mice with chronic kidney disease. Sci Rep 9:6432

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  56. Fang C, Lau WL, Sun J, Chang R, Vallejo A, Lee D, Liu J, Liu H, Hung YH, Zhao Y, Paganini-Hill A, Sumbria RK, Cribbs DH, Fisher M (2023) Chronic kidney disease promotes cerebral microhemorrhage formation. J Neuroinflamm 20:51

    Article  CAS  Google Scholar 

  57. van Overbeek EC, Staals J, van Oostenbrugge RJ (2016) Decreased kidney function relates to progression of cerebral microbleeds in lacunar stroke patients. Int J Stroke: Official J Int Stroke Soc 11:695–700

    Article  Google Scholar 

  58. Xiao L, Lan W, Sun W, Dai Q, Xiong Y, Li L, Zhou Y, Zheng P, Fan W, Ma N, Guo Z, Chen X, Xie X, Xu L, Zhu W, Xu G, Liu X (2015) Chronic kidney disease in patients with Lacunar Stroke: Association with Enlarged Perivascular spaces and total magnetic resonance imaging Burden of Cerebral Small Vessel Disease. Stroke 46:2081–2086

    Article  PubMed  Google Scholar 

  59. Benarroch EE (1993) The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc 68:988–1001

  60. Johns EJ, Kopp UC, DiBona GF (2011) Neural control of renal function. Compr Physiol 1:731–767

    Article  PubMed  Google Scholar 

  61. Meyer JS, Stoica E, Pascu I, Shimazu K, Hartmann A (1973) Catecholamine concentrations in CSF and plasma of patients with cerebral infarction and haemorrhage. Brain 96:277–288

    Article  CAS  PubMed  Google Scholar 

  62. Boone M, Deen PM (2008) Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pflug Arch: Eur J Physiol 456:1005–1024

    Article  CAS  Google Scholar 

  63. Joynt RJ, Feibel JH, Sladek CM (1981) Antidiuretic hormone levels in stroke patients. Ann Neurol 9:182–184

    Article  CAS  PubMed  Google Scholar 

  64. Kim JY, Park J, Chang JY, Kim SH, Lee JE (2016) Inflammation after ischemic stroke: the role of leukocytes and glial cells. Experimental Neurobiol 25:241–251

    Article  Google Scholar 

  65. Nakka VP, Gusain A, Mehta SL, Raghubir R (2008) Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol 37:7–38

    Article  CAS  PubMed  Google Scholar 

  66. Baud L, Ardaillou R (1986) Reactive oxygen species: production and role in the kidney. Am J Physiol 251:F765–776

    CAS  PubMed  Google Scholar 

  67. Pulido-Olmo H, García-Prieto CF, Álvarez-Llamas G, Barderas MG, Vivanco F, Aranguez I, Somoza B, Segura J, Kreutz R, Fernández-Alfonso MS, Ruilope LM, Ruiz-Hurtado G (2016) Role of matrix metalloproteinase-9 in chronic kidney disease: a new biomarker of resistant albuminuria. Clin Sci (London England: 1979) 130:525–538

    Article  CAS  Google Scholar 

  68. Fujita M, Ando K, Kawarazaki H, Kawarasaki C, Muraoka K, Ohtsu H, Shimizu H, Fujita T (2012) Sympathoexcitation by brain oxidative stress mediates arterial pressure elevation in salt-induced chronic kidney disease. Hypertens (Dallas Tex: 1979) 59:105–112

    Article  CAS  Google Scholar 

  69. Adesso S, Magnus T, Cuzzocrea S, Campolo M, Rissiek B, Paciello O, Autore G, Pinto A, Marzocco S (2017) Indoxyl sulfate affects glial function increasing oxidative stress and neuroinflammation in chronic kidney disease: Interaction between astrocytes and Microglia. Front Pharmacol 8:370

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bobot M, Thomas L, Moyon A, Fernandez S, McKay N, Balasse L, Garrigue P, Brige P, Chopinet S, Poitevin S, Cérini C, Brunet P, Dignat-George F, Burtey S, Guillet B, Hache G (2020) Uremic toxic blood-brain barrier disruption mediated by AhR activation leads to cognitive impairment during experimental renal dysfunction. J Am Soc Nephrology: JASN 31:1509–1521

    Article  CAS  PubMed Central  Google Scholar 

  71. Gupta A, Bansal A, Young K, Gautam A, Donald J, Comfort B, Montgomery R (2023) Blood-brain barrier permeability in ESKD-A proof-of-Concept Study. J Am Soc Nephrology: JASN 34:1508–1511

    Article  PubMed  Google Scholar 

Download references

Funding

We express our sincere thanks for the grants provided by the Engineering Research Board (EEQ/2017/000804; YSS_2014_000204) and the Startup grant from the University Grants Commission, Government of India, New Delhi. Additionally, we acknowledge the Acharya Nagarjuna University CIIPR-Seed Money Grant.

Author information

Authors and Affiliations

Authors

Contributions

V.D. and S.K. contributed to the literature review and compilation of Figs. 1, 2 and 3. V.P.N drafted and completed the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Venkata Prasuja Nakka.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Vandana Dulam and Sireesha Katta equal first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dulam, V., Katta, S. & Nakka, V.P. Stroke and Distal Organ Damage: Exploring Brain-Kidney Crosstalk. Neurochem Res (2024). https://doi.org/10.1007/s11064-024-04126-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11064-024-04126-8

Keywords

Navigation