Skip to main content
Log in

Transient Receptor Potential Channels: Multiple Modulators of Peripheral Neuropathic Pain in Several Rodent Models

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuropathic pain, a prevalent chronic condition in clinical settings, has attracted widespread societal attention. This condition is characterized by a persistent pain state accompanied by affective and cognitive disruptions, significantly impacting patients’ quality of life. However, current clinical therapies fall short of addressing its complexity. Thus, exploring the underlying molecular mechanism of neuropathic pain and identifying potential targets for intervention is highly warranted. The transient receptor potential (TRP) receptors, a class of widely distributed channel proteins, in the nervous system, play a crucial role in sensory signaling, cellular calcium regulation, and developmental influences. TRP ion channels are also responsible for various sensory responses including heat, cold, pain, and stress. This review highlights recent advances in understanding TRPs in various rodent models of neuropathic pain, aiming to uncover potential therapeutic targets for clinical management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, [Yun Wang], upon reasonable request.

References

  1. Inoue K, Tsuda M (2018) Microglia in neuropathic pain: cellular and molecular mechanisms and therapeutic potential. Nat Rev Neurosci 19:138–152

    Article  CAS  PubMed  Google Scholar 

  2. Ochoa JL (2009) Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology 72:1282–1283

    Article  PubMed  Google Scholar 

  3. Scholz J et al (2019) The IASP classification of chronic pain for ICD-11: Chronic neuropathic pain. Pain 160:53–59

    Article  PubMed  PubMed Central  Google Scholar 

  4. Attal N, Bouhassira D, Colvin L (2023) Advances and challenges in neuropathic pain: a narrative review and future directions. Br J Anaesth 131:79–92

    Article  PubMed  Google Scholar 

  5. Yoon SY, Oh J (2018) Neuropathic cancer pain: Prevalence, pathophysiology, and management. Korean J Intern Med 33:1058–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Van Der Windt DAWM et al (2008) Physical examination for lumbar radiculopathy due to disc herniation in patients with low-back pain. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD007431

    Article  PubMed  PubMed Central  Google Scholar 

  7. Doughty CT, Bowley MP (2019) Entrapment neuropathies of the upper extremity. Med Clin North Am 103:357–370

    Article  PubMed  Google Scholar 

  8. Calcutt NA (2020) Diabetic neuropathy and neuropathic pain: a (con)fusion of pathogenic mechanisms. Pain. https://doi.org/10.1097/j.pain.0000000000001922

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sampathkumar P, Drage LA, Martin DP (2009) Herpes zoster (Shingles) and postherpetic neuralgia. Mayo Clin Proc 84:274–280

    Article  PubMed  PubMed Central  Google Scholar 

  10. Colvin LA (2020) Europe PMC funders group chemotherapy-induced peripheral neuropathy (CIPN): where are we now ? Pain 160:1–22

    Article  Google Scholar 

  11. Klit H, Finnerup NB, Jensen TS (2009) Central post-stroke pain: clinical characteristics, pathophysiology, and management. The Lancet Neurol 8:857–868

    Article  PubMed  Google Scholar 

  12. Maayah ZH, Takahara S, Ferdaoussi M, Dyck JRB (2020) The anti-inflammatory and analgesic effects of formulated full-spectrum cannabis extract in the treatment of neuropathic pain associated with multiple sclerosis. Inflamm Res 69:549–558

    Article  CAS  PubMed  Google Scholar 

  13. Ford B (2010) Pain in Parkinson’s disease. Mov Disord 25:98–103

    Article  Google Scholar 

  14. Shiao R, Lee-Kubli CA (2018) Neuropathic pain after spinal cord injury: challenges and research perspectives. Neurotherapeutics 15:635–653

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jensen TS, Finnerup NB (2014) Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol 13:924–935

    Article  PubMed  Google Scholar 

  16. Borzan J, Meyer RA (2009) Neuropathic pain. Encyclopedia Neurosci. https://doi.org/10.1016/B978-008045046-9.01926-4

    Article  Google Scholar 

  17. Andersen ML, Araujo P, Frange C, Tufik S (2018) Sleep disturbance and pain: a tale of two common problems. Chest 154:1249–1259

    Article  PubMed  Google Scholar 

  18. Yang C et al (2019) Key role of gut microbiota in anhedonia-like phenotype in rodents with neuropathic pain. Transl Psychiatry. https://doi.org/10.1038/s41398-019-0379-8

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen C et al (2023) Chronic pain conditions and risk of suicidal behavior: a 10-year longitudinal co-twin control study. BMC Med 21:1–11

    CAS  Google Scholar 

  20. Gilron I, Baron R, Jensen T (2015) Neuropathic pain: Principles of diagnosis and treatment. Mayo Clin Proc 90:532–545

    Article  CAS  PubMed  Google Scholar 

  21. Beydoun A (2003) Neuropathic pain: from mechanisms to treatment strategies. J Pain Symptom Manage 25:1–114

    Article  Google Scholar 

  22. Yeh KY et al (2021) A dual-mode multifunctional pulsed radio-frequency stimulator for trigeminal neuralgia relief and its animal model. IEEE Trans Biomed Circuits Syst 15:719–730

    Article  PubMed  Google Scholar 

  23. Li Y et al (2018) Drg voltage-gated sodium channel 1.7 is upregulated in paclitaxel-induced neuropathy in rats and in humans with neuropathic pain. J Neurosci 38:1124–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li N et al (2020) Upregulation of transcription factor 4 downregulates NaV1.8 expression in DRG neurons and prevents the development of rat inflammatory and neuropathic hypersensitivity. Exp Neurol 327:113240

    Article  CAS  PubMed  Google Scholar 

  25. Busserolles J, Tsantoulas C, Eschalier A, García JAL (2016) Potassium channels in neuropathic pain: advances, challenges, and emerging ideas. Pain 157:S7–S14

    Article  PubMed  Google Scholar 

  26. Bourinet E, Francois A, Laffray S (2016) T-type calcium channels in neuropathic pain. Pain 157:S15–S22

    Article  PubMed  Google Scholar 

  27. Guan Z et al (2015) Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain. Nat Neurosci 19:94–101

    Article  PubMed  PubMed Central  Google Scholar 

  28. Takeda I et al (2022) Controlled activation of cortical astrocytes modulates neuropathic pain-like behaviour. Nat Commun 13:1–12

    Article  Google Scholar 

  29. Yu X et al (2020) Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain. Nat Commun 11:1–12

    ADS  CAS  Google Scholar 

  30. Pinho-Ribeiro FA, Verri WA, Chiu IM (2017) Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol 38:5–19

    Article  CAS  PubMed  Google Scholar 

  31. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sappington RM et al (2015) Activation of transient receptor potential vanilloid-1 (TRPV1) influences how retinal ganglion cell neurons respond to pressure-related stress. Channels 9:102–113

    Article  PubMed  PubMed Central  Google Scholar 

  33. Harteneck C (2003) Proteins modulating TRP channel function. Cell Calcium 33:303–310

    Article  CAS  PubMed  Google Scholar 

  34. Taylor BK (2001) Pathophysiologic mechanisms of neuropathic pain. Curr Pain Headache Rep. https://doi.org/10.1007/s11916-001-0083-1

    Article  PubMed  Google Scholar 

  35. Sommer C, Leinders M, Üçeyler N (2018) Inflammation in the pathophysiology of neuropathic pain. Pain. https://doi.org/10.1097/j.pain.0000000000001122

    Article  PubMed  Google Scholar 

  36. Nishimoto R et al (2021) Thermosensitive TRPV4 channels mediate temperature-dependent microglia movement. Proce Natl Acad Sci USA. https://doi.org/10.1073/pnas.2012894118

    Article  Google Scholar 

  37. Wu J et al (2023) Function of TRP channels in monocytes/macrophages. Front Immunol 14:1–11

    Google Scholar 

  38. Scimemi A (2013) A TRP among the astrocytes. J Physiol 591:9–15

    Article  CAS  PubMed  Google Scholar 

  39. Wedel S et al (2022) SAFit2 reduces neuroinflammation and ameliorates nerve injury-induced neuropathic pain. J Neuroinflammation 19:1–21

    Article  Google Scholar 

  40. Chen G, Zhang YQ, Qadri YJ, Serhan CN, Ji RR (2018) Microglia in pain: detrimental and protective roles in pathogenesis and resolution of pain. Neuron 100:1292–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiang BC et al (2016) CXCL13 drives spinal astrocyte activation and neuropathic pain via CXCR5. J Clin Investig 126:745–761

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    Article  CAS  PubMed  Google Scholar 

  43. Gees M, Colsoul B, Nilius B (2010) The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a003962

    Article  PubMed  PubMed Central  Google Scholar 

  44. Julius D (2013) TRP channels and pain. Annu Rev Cell Dev Biol. https://doi.org/10.1146/annurev-cellbio-101011-155833

    Article  PubMed  Google Scholar 

  45. Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Rubaiy HN (2019) Treasure troves of pharmacological tools to study transient receptor potential canonical 1/4/5 channels. Br J Pharmacol 176:832–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ratté S, Karnup S, Prescott SA (2018) Nonlinear relationship between spike-dependent calcium influx and TRPC channel activation enables robust persistent spiking in neurons of the anterior cingulate cortex. J Neurosci 38:1788–1801

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yang F, Sivils A, Cegielski V, Singh S, Chu XP (2023) Transient receptor potential (TRP) channels in pain, neuropsychiatric disorders, and epilepsy. Int J Mol Sci. https://doi.org/10.3390/ijms24054714

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chu WG et al (2020) TRPC1/4/5 channels contribute to morphine-induced analgesic tolerance and hyperalgesia by enhancing spinal synaptic potentiation and structural plasticity. FASEB J 34:8526–8543

    Article  CAS  PubMed  Google Scholar 

  50. Alessandri-Haber N, Dina OA, Chen X, Levine JD (2009) TRPC1 and TRPC6 channels cooperate with TRPV4 to mediate mechanical hyperalgesia and nociceptor sensitization. J Neurosci 29:6217–6228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Benham CD, Gunthorpe MJ, Davis JB (2003) TRPV channels as temperature sensors. Cell Calcium 33:479–487

    Article  CAS  PubMed  Google Scholar 

  52. Quartu M et al (2014) Bortezomib treatment produces nocifensive behavior and changes in the expression of TRPV1, CGRP, and substance P in the Rat DRG, spinal cord, and sciatic nerve. BioMed Res Int. https://doi.org/10.1155/2014/180428

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kwon DH et al (2021) Heat-dependent opening of TRPV1 in the presence of capsaicin. Nat Struct Mol Biol. https://doi.org/10.1038/s41594-021-00616-3

    Article  PubMed  PubMed Central  Google Scholar 

  54. Alessandri-Haber N et al (2004) Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci 24:4444–4452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Premkumar LS, Abooj M (2013) TRP channels and analgesia. Life Sci 92:415–424

    Article  CAS  PubMed  Google Scholar 

  56. Jimenez I et al (2020) TRPM channels in human diseases. Cells. https://doi.org/10.3390/cells9122604

    Article  PubMed  PubMed Central  Google Scholar 

  57. McNulty S, Fonfria E (2005) The role of TRPM channels in cell death. Pflugers Arch 451:235–242

    Article  CAS  PubMed  Google Scholar 

  58. Pérez De Vega MJ, Gómez-Monterrey I, Ferrer-Montiel A, González-Muñiz R (2016) Transient receptor potential melastatin 8 channel (TRPM8) modulation cool entryway for treating pain and cancer. J Med Chem 59:10006–10029

    Article  PubMed  Google Scholar 

  59. Dhaka A et al (2007) TRPM8 is required for cold sensation in mice. Neuron 54:371–378

    Article  CAS  PubMed  Google Scholar 

  60. Haraguchi K et al (2012) TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. J Neurosci 32:3931–3941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Aloi VD et al (2023) TRPM3 as a novel target to alleviate acute oxaliplatin-induced peripheral neuropathic pain. Pain 164:2060–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Monteiro S, de Araujo D, Nassini R, Geppetti P, De Logu F (2020) TRPA1 as a therapeutic target for nociceptive pain. Expert Opin Ther Tar 24:997–1008

    Article  Google Scholar 

  63. Talavera K et al (2020) Mammalian transient receptor potential TRPA1 channels: from structure to disease. Physiol Rev 100:803

    Article  Google Scholar 

  64. Pop C et al (2020) Effects of Lycium barbarum L. Polysaccharides on inflammation and oxidative stress markers in a pressure overload-induced heart failure rat model. Molecules 25:1–10

    Article  Google Scholar 

  65. Harrison RS, Sharpe PC, Singh Y, Fairlie DP (2007) Amyloid peptides and proteins in review. Rev Physiol Biochem Pharmacol 159:1–77

    CAS  PubMed  Google Scholar 

  66. Gouin O et al (2017) TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization. Protein Cell 8:644–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Garrison SR, Dietrich A, Stucky CL (2012) TRPC1 contributes to light-touch sensation and mechanical responses in low-threshold cutaneous sensory neurons. J Neurophysiol 107:913–922

    Article  CAS  PubMed  Google Scholar 

  68. Wang J et al (2020) The analgesic action of larixyl acetate, a potent TRPC6 inhibitor, in rat neuropathic pain model induced by spared nerve injury. J Neuroinflammation 17:1–20

    Article  CAS  Google Scholar 

  69. Xu S et al (2022) Dexmedetomidine alleviates neuropathic pain via the TRPC6-p38 MAPK pathway in the dorsal root ganglia of rats. J Pain Res 15:2437–2448

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wang Z, Ling D, Wu C, Han J, Zhao Y (2020) Baicalin prevents the up-regulation of TRPV1 in dorsal root ganglion and attenuates chronic neuropathic pain. Vet Med Sci 6:1034–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yang B et al (2021) Higenamine attenuates neuropathic pain by inhibition of NOX2/ROS/TRP/P38 mitogen-activated protein kinase/NF-ĸB signaling pathway. Front Pharmacol 12:1–15

    Article  Google Scholar 

  72. Chen Y, Yang C, Wang ZJ (2011) Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience 193:440–451

    Article  CAS  PubMed  Google Scholar 

  73. Ji G, Zhou S, Carlton SM (2008) Intact Aδ-fibers up-regulate transient receptor potential A1 and contribute to cold hypersensitivity in neuropathic rats. Neuroscience 154:1054–1066

    Article  CAS  PubMed  Google Scholar 

  74. Obata K et al (2010) TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury (Journal of Clinical Investigation (2005) 115, (2393–2401)). J Clin Investig 120:394

    Article  CAS  Google Scholar 

  75. Wang H, Song T, Wang W, Zhang Z (2019) TRPM2 participates the transformation of acute pain to chronic pain during injury-induced neuropathic pain. Synapse. https://doi.org/10.1002/syn.22117

    Article  PubMed  PubMed Central  Google Scholar 

  76. Su S, Yudin Y, Kim N, Tao YX, Rohacs T (2021) TRPM3 channels play roles in heat hypersensitivity and spontaneous pain after nerve injury. J Neurosci 41:2457–2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. De Caro C et al (2018) Antinociceptive effect of two novel transient receptor potential melastatin 8 antagonists in acute and chronic pain models in rat. Br J Pharmacol 175:1691–1706

    Article  PubMed  PubMed Central  Google Scholar 

  78. Poulson SJ et al (2020) Naked mole-rats lack cold sensitivity before and after nerve injury. Mol Pain. https://doi.org/10.1177/1744806920955103

    Article  PubMed  PubMed Central  Google Scholar 

  79. Dai Y (2016) TRPs and pain. Semin Immunopathol 38:277–291

    Article  CAS  PubMed  Google Scholar 

  80. Marwaha L et al (2016) TRP channels: potential drug target for neuropathic pain. Inflammopharmacology 24:305–317

    Article  CAS  PubMed  Google Scholar 

  81. Jaggi AS, Jain V, Singh N (2011) Animal models of neuropathic pain. Fundam Clin Pharmacol 25:1–28

    Article  CAS  PubMed  Google Scholar 

  82. Zhang XL, Lee KY, Priest BT, Belfer I, Gold MS (2015) Inflammatory mediator-induced modulation of GABAA currents in human sensory neurons. Neuroscience 310:401–409

    Article  CAS  PubMed  Google Scholar 

  83. Ririe DG, Liu B, Clayton B, Tong C, Eisenach JC (2008) Electrophysiologic characteristics of large neurons in dorsal root ganglia during development and after hind paw incision in the rat. Anesthesiology 109:111–117

    Article  PubMed  Google Scholar 

  84. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  PubMed  Google Scholar 

  85. De Vry J, Kuhl E, Franken-Kunkel P, Eckel G (2004) Pharmacological characterization of the chronic constriction injury model of neuropathic pain. Eur J Pharmacol 491:137–148

    Article  PubMed  Google Scholar 

  86. Ho Kim S, Mo Chung J (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355–363

    Article  PubMed  Google Scholar 

  87. Yoon C, Young Wook Y, Heung Sik N, Sun Ho K, Jin Mo C (1994) Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain 59:369–376

    Article  PubMed  Google Scholar 

  88. Boccella S et al (2018) Spared nerve injury as a long-lasting model of neuropathic pain. Methods Mol Biol 1727:373–378

    Article  CAS  PubMed  Google Scholar 

  89. Bourquin AF et al (2006) Assessment and analysis of mechanical allodynia-like behavior induced by spared nerve injury (SNI) in the mouse. Pain 122(14):e1-14.e14

    Google Scholar 

  90. Courteix C, Eschalier A, Lavarenne J (1993) Streptozocin-induced diabetic rats: behavioural evidence for a model of chronic pain. Pain 53:81–88

    Article  CAS  PubMed  Google Scholar 

  91. Burchiel KIMJ, Russell LC, Lee RP, Sima AAF (1985) Spontaneous activity of primary afferent neurons in diabetic BB/Wistar rats. Diabetes. https://doi.org/10.2337/diab.34.11.1210

    Article  PubMed  Google Scholar 

  92. Flatters SJL, Bennett GJ (2006) Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain 122:245–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tredici G, Tredici S, Fabbrica D, Minoia C, Cavaletti G (1998) Experimental cisplatin neuronopathy in rats and the effect of retinoic acid administration. J Neurooncol 36:31–40

    Article  CAS  PubMed  Google Scholar 

  94. Ling B, Authier N, Balayssac D, Eschalier A, Coudore F (2007) Behavioral and pharmacological description of oxaliplatin-induced painful neuropathy in rat. Pain 128:225–234

    Article  CAS  PubMed  Google Scholar 

  95. Colburn RW et al (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron 54:379–386

    Article  CAS  PubMed  Google Scholar 

  96. Wang C et al (2019) Facilitation of MrgprD by TRP-A1 promotes neuropathic pain. FASEB J 33:1360–1373

    Article  CAS  PubMed  Google Scholar 

  97. Staaf S, Oerther S, Lucas G, Mattsson JP, Ernfors P (2009) Differential regulation of TRP channels in a rat model of neuropathic pain. Pain 144:187–199

    Article  CAS  PubMed  Google Scholar 

  98. Yamamoto S, Ohsawa M, Ono H (2013) Contribution of TRPV1 receptor-expressing fibers to spinal ventral root after-discharges and mechanical hyperalgesia in a spared nerve injury (SNI) rat model. J Pharmacol Sci 121:9–16

    Article  CAS  PubMed  Google Scholar 

  99. Brignell JL, Chapman V, Kendall DA (2008) Comparison of icilin- and cold-evoked responses of spinal neurones, and their modulation of mechanical activity, in a model of neuropathic pain. Brain Res 1215:87–96

    Article  CAS  PubMed  Google Scholar 

  100. Hagenacker T, Lampe M, Schäfers M (2014) Icilin reduces voltage-gated calcium channel currents in naïve and injured DRG neurons in the rat spinal nerve ligation model. Brain Res 1557:171–179

    Article  CAS  PubMed  Google Scholar 

  101. Zhang BY et al (2020) Alpha-lipoic acid downregulates TRPV1 receptor via NF-κB and attenuates neuropathic pain in rats with diabetes. CNS Neurosci Ther 26:762–772

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nam JS et al (2014) Effects of nefopam on streptozotocin-induced diabetic neuropathic pain in rats. Korean J Pain 27:326–333

    Article  PubMed  PubMed Central  Google Scholar 

  103. Huang Q, Chen Y, Gong N, Wang YX (2016) Methylglyoxal mediates streptozotocin-induced diabetic neuropathic pain via activation of the peripheral TRPA1 and Nav1.8 channels. Metabolism 65:463–474

    Article  CAS  PubMed  Google Scholar 

  104. Wei H, Hämäläinen MM, Saarnilehto M, Koivisto A, Pertovaara A (2009) Attenuation of mechanical hypersensitivity by an antagonist of the TRPA1 ion channel in diabetic animals. Anesthesiology 111:147–154

    Article  CAS  PubMed  Google Scholar 

  105. Reese RM et al (2020) Behavioral characterization of a CRISPR-generated TRPA1 knockout rat in models of pain, itch, and asthma. Sci Rep 10:1–11

    Article  ADS  Google Scholar 

  106. Kahya MC, Nazıroğlu M, Övey İS (2017) Modulation of diabetes-induced oxidative stress, apoptosis, and Ca2+ Entry Through TRPM2 and TRPV1 channels in dorsal root ganglion and hippocampus of diabetic rats by melatonin and selenium. Mol Neurobiol 54:2345–2360

    Article  CAS  PubMed  Google Scholar 

  107. Roa-Coria JE et al (2019) Possible involvement of peripheral TRP channels in the hydrogen sulfide-induced hyperalgesia in diabetic rats 11 Medical and Health Sciences 1109 Neurosciences. BMC Neurosci 20:1–17

    Article  PubMed  PubMed Central  Google Scholar 

  108. Miao B et al (2021) The implication of transient receptor potential canonical 6 in BDNF-induced mechanical allodynia in rat model of diabetic neuropathic pain. Life Sci 273:119308

    Article  CAS  PubMed  Google Scholar 

  109. Wolf SL et al (2012) The relationship between numbness, tingling, and shooting/burning pain in patients with chemotherapy-induced peripheral neuropathy (CIPN) as measured by the EORTC QLQ-CIPN20 instrument, N06CA. Support Care Cancer 20:625–632

    Article  PubMed  Google Scholar 

  110. Leo M et al (2020) Platinum-based drugs cause mitochondrial dysfunction in cultured dorsal root ganglion neurons. Int J Mol Sci 21:1–8

    Article  ADS  Google Scholar 

  111. Sałat K et al (2014) Antiallodynic and antihyperalgesic activity of 3-[4-(3-trifluoromethyl- phenyl)-piperazin-1-yl]-dihydrofuran-2-one compared to pregabalin in chemotherapy-induced neuropathic pain in mice. Pharmacol Biochem Behav 122:173–181

    Article  PubMed  Google Scholar 

  112. Chukyo A et al (2018) Oxaliplatin-induced changes in expression of transient receptor potential channels in the dorsal root ganglion as a neuropathic mechanism for cold hypersensitivity. Neuropeptides 67:95–101

    Article  CAS  PubMed  Google Scholar 

  113. Hao Y et al (2019) Huachansu suppresses TRPV1 up-regulation and spinal astrocyte activation to prevent oxaliplatin-induced peripheral neuropathic pain in rats. Gene 680:43–50

    Article  CAS  PubMed  Google Scholar 

  114. Bertamino A et al (2018) Identification of a potent tryptophan-based TRPM8 antagonist with in vivo analgesic activity. J Med Chem 61:6140–6152

    Article  CAS  PubMed  Google Scholar 

  115. Wu B et al (2021) Oxaliplatin depolarizes the IB4– dorsal root ganglion neurons to drive the development of neuropathic pain through TRPM8 in mice. Front Mol Neurosci 14:1–13

    Article  CAS  Google Scholar 

  116. Kawashiri T et al (2012) L type Ca2+ channel blockers prevent oxaliplatin-induced cold hyperalgesia and TRPM8 overexpression in rats. Mol Pain 8:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hara T et al (2013) Effect of paclitaxel on transient receptor potential vanilloid 1 in rat dorsal root ganglion. Pain 154:882–889

    Article  CAS  PubMed  Google Scholar 

  118. Ba X et al (2018) Cinobufacini protects against paclitaxel-induced peripheral neuropathic pain and suppresses TRPV1 up-regulation and spinal astrocyte activation in rats. Biomed Pharmacother 108:76–84

    Article  CAS  PubMed  Google Scholar 

  119. Tu Y-P et al (2020) Swabs collected by patients or health care workers for SARS-CoV-2 testing. N Engl J Med 383:494–496

    Article  PubMed  Google Scholar 

  120. Chiba T et al (2017) Vincristine-induced peripheral neuropathic pain and expression of transient receptor potential vanilloid 1 in rat. J Pharmacol Sci 133:254–260

    Article  CAS  PubMed  Google Scholar 

  121. Khan A et al (2021) Suppression of TRPV1/TRPM8/p2y nociceptors by withametelin via downregulating mapk signaling in mouse model of vincristine-induced neuropathic pain. Int J Mol Sci. https://doi.org/10.3390/ijms22116084

    Article  PubMed  PubMed Central  Google Scholar 

  122. Marwaha L et al (2016) Niflumic acid, a TRPV1 channel modulator, ameliorates stavudine-induced neuropathic pain. Inflammopharmacology 24:319–334

    Article  CAS  PubMed  Google Scholar 

  123. Van Hecke O, Austin SK, Khan RA, Smith BH, Torrance N (2014) Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain 155:654–662

    Article  PubMed  Google Scholar 

  124. Hargus NJ, Patel MK (2007) Voltage-gated Na+ channels in neuropathic pain. Expert Opin Investig Drugs 16:635–646

    Article  CAS  PubMed  Google Scholar 

  125. Inoue K, Tsuda M (2018) Microglia in neuropathic pain: cellular and molecular mechanisms and therapeutic potentialfile:///C:/Users/10548/Desktop/DRG/Dorsal root ganglion infiltration by macrophages contributes to paclitaxel chemotherapy-induced peripheral neuropathy.pdf. Nat Rev Neurosci 19:138–152

    Article  CAS  PubMed  Google Scholar 

  126. Mollazadeh H et al (2019) Immune modulation by curcumin: the role of interleukin-10. Crit Rev Food Sci Nutr. https://doi.org/10.1080/104083981358139

    Article  PubMed  Google Scholar 

  127. Hong Z et al (2016) Transient receptor potential vanilloid 4-induced modulation of voltage-gated sodium channels in hippocampal neurons. Mol Neurobiol 53:759–768

    Article  CAS  PubMed  Google Scholar 

  128. Egaña-Huguet J et al (2021) Lack of the transient receptor potential vanilloid 1 shifts cannabinoid-dependent excitatory synaptic plasticity in the dentate gyrus of the mouse brain hippocampus. Front Neuroanat 15:1–12

    Article  Google Scholar 

  129. Premkumar LS (2014) Transient receptor potential channels as targets for phytochemicals. ACS Chem Neurosci 5:1117–1130

    Article  CAS  PubMed  Google Scholar 

  130. Mahmoud O, Soares GB, Yosipovitch G (2023) Transient receptor potential channels and Itch. Int J Mol Sci. https://doi.org/10.3390/ijms24010420

    Article  PubMed  PubMed Central  Google Scholar 

  131. Müller I et al (2022) Transient receptor potential (TRP) channels in airway toxicity and disease: an update. Cells. https://doi.org/10.3390/cells11182907

    Article  PubMed  PubMed Central  Google Scholar 

  132. Fernández-Carvajal A, González-Muñiz R, Fernández-Ballester G, Ferrer-Montiel A (2020) Investigational drugs in early phase clinical trials targeting thermotransient receptor potential (thermoTRP) channels. Expert Opin Investig Drugs 29:1209–1222

    Article  PubMed  Google Scholar 

  133. Rosenbaum T, Islas LD (2023) Molecular physiology of TRPV channels: controversies and future challenges. Annu Rev Physiol 85:293–316

    Article  CAS  PubMed  Google Scholar 

  134. Chen J et al (2013) Species differences and molecular determinant of TRPA1 cold sensitivity. Nat Commun 4:1–7

    Article  ADS  Google Scholar 

  135. Moran MM (2018) TRP channels as potential drug targets. Annu Rev Pharmacol Toxicol 58:309–330

    Article  CAS  PubMed  Google Scholar 

  136. Palazzo E et al (2002) Interaction between vanilloid and glutamate receptors in the central modulation of nociception. Eur J Pharmacol 439:69–75

    Article  CAS  PubMed  Google Scholar 

  137. Enrich-Bengoa J et al (2022) TRPV2: a key player in myelination disorders of the central nervous system. Int J Mol Sci. https://doi.org/10.3390/ijms23073617

    Article  PubMed  PubMed Central  Google Scholar 

  138. Gualdani R, Gailly P (2020) How TRPC channels modulate hippocampal function. Int J Mol Sci 21:1–19

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Home for Researchers (www.home-for-researchers.com) for English language editing. Figures were created by BioRender (Publication Permissions: JA264FWIEQ; KP264FWQ0C; MF264JVU2N).

Funding

This work was supported by the National Natural Science Foundation of China (81771181, 81571065, 82171217) and the Beijing Natural Science Foundation (7202053).

Author information

Authors and Affiliations

Authors

Contributions

All authors made a significant contribution to the work. SX: literature search and selection, content writing, figure and table creation. YW: conceptualization, structure design, content revision and funding acquisition.

Corresponding author

Correspondence to Yun Wang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Wang, Y. Transient Receptor Potential Channels: Multiple Modulators of Peripheral Neuropathic Pain in Several Rodent Models. Neurochem Res 49, 872–886 (2024). https://doi.org/10.1007/s11064-023-04087-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04087-4

Keywords

Navigation