Skip to main content

Advertisement

Log in

The Role of IL-6 in Neurodegenerative Disorders

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

“Neurodegenerative disorder” is an umbrella term for a group of fatal progressive neurological illnesses characterized by neuronal loss and inflammation. Interleukin-6 (IL-6), a pleiotropic cytokine, significantly affects the activities of nerve cells and plays a pivotal role in neuroinflammation. Furthermore, as high levels of IL-6 have been frequently observed in association with several neurodegenerative disorders, it may potentially be used as a biomarker for the progression and prognosis of these diseases. This review summarizes the production and function of IL-6 as well as its downstream signaling pathways. Moreover, we make a comprehensive review on the roles of IL-6 in neurodegenerative disorders and its potential clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Abbreviations

IL-6:

Interleukin-6

AD:

Alzheimer’s disease

PD:

Parkinson’s disease

ALS:

Amyotrophic lateral sclerosis

HD:

Huntington’s disease

MS:

Multiple sclerosis

CNS:

Central nervous system

IL-1β:

Interleukin-1 beta

IL-6R:

IL-6 receptor

mIL-6R:

Membrane-bound IL-6R

sIL-6R:

Soluble IL-6R

gp130:

Glycoprotein 130

JAK:

Janus kinase

STAT:

Signal transducer and activator of transcription

NSCs:

Neural stem cells

CSF:

Cerebrospinal fluid

References

  1. Wilson DM 3rd, Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM, Dewachter I (2023) Hallmarks of neurodegenerative diseases. Cell 186:693–714

    Article  CAS  PubMed  Google Scholar 

  2. Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, Bohr VA (2019) Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15:565–581

    Article  PubMed  Google Scholar 

  3. Stephenson J, Nutma E, van der Valk P, Amor S (2018) Inflammation in CNS neurodegenerative diseases. Immunology 154:204–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Erta M, Quintana A, Hidalgo J (2012) Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 8:1254–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hirano TYK, Harada H (1986) Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324:73–76

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Somers W, Stahl M, Seehra JS (1997) 1.9 A crystal structure of interleukin 6: implications for a novel mode of receptor dimerization and signaling. EMBO J 16:989–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luan D, Dadpey B, Zaid J, Bridge-Comer PE, DeLuca JH, Xia W, Castle J, Reilly SM (2023) Adipocyte-secreted IL-6 sensitizes macrophages to IL-4 signaling. Diabetes 72:367–374

    Article  CAS  PubMed  Google Scholar 

  8. Nara H, Watanabe R (2021) Anti-inflammatory effect of muscle-derived interleukin-6 and its involvement in lipid metabolism. Int J Mol Sci 22(18):9889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Said EA, Al-Reesi I, Al-Shizawi N, Jaju S, Al-Balushi MS, Koh CY, Al-Jabri AA, Jeyaseelan L (2021) Defining IL-6 levels in healthy individuals: a meta-analysis. J Med Virol 93:3915–3924

    Article  CAS  PubMed  Google Scholar 

  10. Wei J, Xu H, Davies JL, Hemmings GP (1992) Increase of plasma IL-6 concentration with age in healthy subjects. Life Sci 51:1953–1956

    Article  CAS  PubMed  Google Scholar 

  11. Tyrrell DJ, Blin MG, Song J, Wood SC, Zhang M, Beard DA, Goldstein DR (2020) Age-associated mitochondrial dysfunction accelerates atherogenesis. Circ Res 126:298–314

    Article  CAS  PubMed  Google Scholar 

  12. Alanazi AZ, Clark MA (2019) Angiotensin III induces JAK2/STAT3 leading to IL-6 production in rat vascular smooth muscle cells. Int J Mol Sci 20(22):5551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu JF, Chi MC, Lin CY, Lee CW, Chang TM, Han CK, Huang YL, Fong YC, Chen HT, Tang CH (2021) PM2.5 facilitates IL-6 production in human osteoarthritis synovial fibroblasts via ASK1 activation. J Cell Physiol 236:2205–2213

    Article  CAS  PubMed  Google Scholar 

  14. Russell FD, Visagie JC, Noll JL (2022) Secretion of IL-6 by fibroblasts exposed to Australian honeys involves lipopolysaccharide and is independent of floral source. Sci Rep 12:16628

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  15. Choi H, Kim K, Han J, Choi H, Jin SH, Lee EK, Shin DW, Lee TR, Lee AY, Noh M (2012) Kojic acid-induced IL-6 production in human keratinocytes plays a role in its anti-melanogenic activity in skin. J Dermatol Sci 66:207–215

    Article  CAS  PubMed  Google Scholar 

  16. Gerosa RC, Boettcher S, Kovtonyuk LV, Hausmann A, Hardt WD, Hidalgo J, Nombela-Arrieta C, Manz MG (2021) CXCL12-abundant reticular cells are the major source of IL-6 upon LPS stimulation and thereby regulate hematopoiesis. Blood Adv 5:5002–5015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Y, Li B, Ning B (2022) Evaluating IL-6 and IL-10 as rapid diagnostic tools for Gram-negative bacteria and as disease severity predictors in pediatric sepsis patients in the intensive care unit. Front Immunol 13:1043968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Merz C, von Massenhausen A, Queisser A, Vogel W, Andren O, Kirfel J, Duensing S, Perner S, Nowak M (2016) IL-6 overexpression in ERG-positive prostate cancer is mediated by prostaglandin receptor EP2. Am J Pathol 186:974–984

    Article  CAS  PubMed  Google Scholar 

  19. Licastro F, Grimaldi LM, Bonafe M, Martina C, Olivieri F, Cavallone L, Giovanietti S, Masliah E, Franceschi C (2003) Interleukin-6 gene alleles affect the risk of Alzheimer’s disease and levels of the cytokine in blood and brain. Neurobiol Aging 24:921–926

    Article  CAS  PubMed  Google Scholar 

  20. Pereira DS, Garcia DM, Narciso FM, Santos ML, Dias JM, Queiroz BZ, Souza ER, Nobrega OT, Pereira LS (2011) Effects of 174 G/C polymorphism in the promoter region of the interleukin-6 gene on plasma IL-6 levels and muscle strength in elderly women. Braz J Med Biol Res 44:123–129

    Article  CAS  PubMed  Google Scholar 

  21. Walston J, Arking DE, Fallin D, Li T, Beamer B, Xue Q, Ferrucci L, Fried LP, Chakravarti A (2005) IL-6 gene variation is not associated with increased serum levels of IL-6, muscle, weakness, or frailty in older women. Exp Gerontol 40:344–352

    Article  CAS  PubMed  Google Scholar 

  22. Zhang G, Zhou B, Wang W, Zhang M, Zhao Y, Wang Z, Yang L, Zhai J, Feng CG, Wang J, Chen X (2012) A functional single-nucleotide polymorphism in the promoter of the gene encoding interleukin 6 is associated with susceptibility to tuberculosis. J Infect Dis 205:1697–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Riethmueller S, Somasundaram P, Ehlers JC, Hung CW, Flynn CM, Lokau J, Agthe M, Dusterhoft S, Zhu Y, Grotzinger J, Lorenzen I, Koudelka T, Yamamoto K, Pickhinke U, Wichert R, Becker-Pauly C, Radisch M, Albrecht A, Hessefort M, Stahnke D, Unverzagt C, Rose-John S, Tholey A, Garbers C (2017) Proteolytic origin of the soluble human IL-6R in vivo and a decisive role of N-glycosylation. PLoS Biol 15:e2000080

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lust JA, Donovan KA, Kline MP, Greipp PR, Kyle RA, Maihle NJ (1992) Isolation of an mRNA encoding a soluble form of the human interleukin-6 receptor. Cytokine 4:96–100

    Article  CAS  PubMed  Google Scholar 

  25. Wilkinson AN, Gartlan KH, Kelly G, Samson LD, Olver SD, Avery J, Zomerdijk N, Tey SK, Lee JS, Vuckovic S, Hill GR (2018) Granulocytes are unresponsive to IL-6 due to an absence of gp130. J Immunol 200:3547–3555

    Article  CAS  PubMed  Google Scholar 

  26. Hibi M, Murakami M, Saito M, Hirano T, Taga T, Kishimoto T (1990) Molecular cloning and expression of an IL-6 signal transducer, gp130. Cell 63:1149–1157

    Article  CAS  PubMed  Google Scholar 

  27. Boulanger MJ, Chow DC, Brevnova EE, Garcia KC (2003) Hexameric structure and assembly of the interleukin-6/IL-6 alpha-receptor/gp130 complex. Science 300:2101–2104

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Heink S, Yogev N, Garbers C, Herwerth M, Aly L, Gasperi C, Husterer V, Croxford AL, Moller-Hackbarth K, Bartsch HS, Sotlar K, Krebs S, Regen T, Blum H, Hemmer B, Misgeld T, Wunderlich TF, Hidalgo J, Oukka M, Rose-John S, Schmidt-Supprian M, Waisman A, Korn T (2017) Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic T(H)17 cells. Nat Immunol 18:74–85

    Article  CAS  PubMed  Google Scholar 

  29. Gadient RA, Otten U (1994) Identification of interleukin-6 (IL-6)-expressing neurons in the cerebellum and hippocampus of normal adult rats. Neurosci Lett 182:243–246

    Article  CAS  PubMed  Google Scholar 

  30. Gadient RA, Otten U (1994) Expression of interleukin-6 (IL-6) and interleukin-6 receptor (IL-6R) mRNAs in rat brain during postnatal development. Brain Res 637:10–14

    Article  CAS  PubMed  Google Scholar 

  31. Marz P, Cheng JG, Gadient RA, Patterson PH, Stoyan T, Otten U, Rose-John S (1998) Sympathetic neurons can produce and respond to interleukin 6. Proc Natl Acad Sci U S A 95:3251–3256

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Sallmann S, Juttler E, Prinz S, Petersen N, Knopf U, Weiser T, Schwaninger M (2000) Induction of interleukin-6 by depolarization of neurons. J Neurosci 20:8637–8642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Van Wagoner NJ, Oh JW, Repovic P, Benveniste EN (1999) Interleukin-6 (IL-6) production by astrocytes: autocrine regulation by IL-6 and the soluble IL-6 receptor. J Neurosci 19:5236–5244

    Article  PubMed  PubMed Central  Google Scholar 

  34. Banks WA, Kastin AJ, Gutierrez EG (1994) Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci Lett 179:53–56

    Article  CAS  PubMed  Google Scholar 

  35. Liu H, Wu X, Luo J, Wang X, Guo H, Feng D, Zhao L, Bai H, Song M, Liu X, Guo W, Li X, Yue L, Wang B, Qu Y (2019) Pterostilbene Attenuates Astrocytic Inflammation and Neuronal Oxidative Injury After Ischemia-Reperfusion by Inhibiting NF-kappaB Phosphorylation. Front Immunol 10:2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jankord R, Zhang R, Flak JN, Solomon MB, Albertz J, Herman JP (2010) Stress activation of IL-6 neurons in the hypothalamus. Am J Physiol Regul Integr Comp Physiol 299:R343-351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J, Herrmann N (2010) A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 68:930–941

    Article  CAS  PubMed  Google Scholar 

  38. Qin XY, Zhang SP, Cao C, Loh YP, Cheng Y (2016) Aberrations in peripheral inflammatory cytokine levels in Parkinson disease: a systematic review and meta-analysis. JAMA Neurol 73:1316–1324

    Article  PubMed  Google Scholar 

  39. Zhang H, Wu J, Shen FF, Yuan YS, Li X, Ji P, Zhu L, Sun L, Ding J, Niu Q, Zhang KZ (2020) Activated Schwann cells and increased inflammatory cytokines IL-1beta, IL-6, and TNF-alpha in patients’ sural nerve are lack of tight relationship with specific sensory disturbances in Parkinson’s disease. CNS Neurosci Ther 26:518–526

    Article  CAS  PubMed  Google Scholar 

  40. Stampanoni Bassi M, Iezzi E, Drulovic J, Pekmezovic T, Gilio L, Furlan R, Finardi A, Marfia GA, Sica F, Centonze D, Buttari F (2020) IL-6 in the cerebrospinal fluid signals disease activity in multiple sclerosis. Front Cell Neurosci 14:120

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sun GJ, Zhou Y, Stadel RP, Moss J, Yong JH, Ito S, Kawasaki NK, Phan AT, Oh JH, Modak N, Reed RR, Toni N, Song H, Ming GL (2015) Tangential migration of neuronal precursors of glutamatergic neurons in the adult mammalian brain. Proc Natl Acad Sci U S A 112:9484–9489

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Kong X, Gong Z, Zhang L, Sun X, Ou Z, Xu B, Huang J, Long D, He X, Lin X, Li Q, Xu L, Xuan A (2019) JAK2/STAT3 signaling mediates IL-6-inhibited neurogenesis of neural stem cells through DNA demethylation/methylation. Brain Behav Immun 79:159–173

    Article  CAS  PubMed  Google Scholar 

  44. Storer MA, Gallagher D, Fatt MP, Simonetta JV, Kaplan DR, Miller FD (2018) Interleukin-6 regulates adult neural stem cell numbers during normal and abnormal post-natal development. Stem Cell Reports 10:1464–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Taga T, Fukuda S (2005) Role of IL-6 in the neural stem cell differentiation. Clin Rev Allergy Immunol 28:249–256

    Article  CAS  PubMed  Google Scholar 

  46. Sakata H, Narasimhan P, Niizuma K, Maier CM, Wakai T, Chan PH (2012) Interleukin 6-preconditioned neural stem cells reduce ischaemic injury in stroke mice. Brain 135:3298–3310

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kathuria A, Lopez-Lengowski K, Roffman JL, Karmacharya R (2022) Distinct effects of interleukin-6 and interferon-gamma on differentiating human cortical neurons. Brain Behav Immun 103:97–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pavelko KD, Howe CL, Drescher KM, Gamez JD, Johnson AJ, Wei T, Ransohoff RM, Rodriguez M (2003) Interleukin-6 protects anterior horn neurons from lethal virus-induced injury. J Neurosci 23:481–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. West PK, Viengkhou B, Campbell IL, Hofer MJ (2019) Microglia responses to interleukin-6 and type I interferons in neuroinflammatory disease. Glia 67:1821–1841

    Article  PubMed  Google Scholar 

  50. Willis EF, MacDonald KPA, Nguyen QH, Garrido AL, Gillespie ER, Harley SBR, Bartlett PF, Schroder WA, Yates AG, Anthony DC, Rose-John S, Ruitenberg MJ, Vukovic J (2020) Repopulating microglia promote brain repair in an IL-6-dependent manner. Cell 180(833–846):e816

    Google Scholar 

  51. Couch ACM, Solomon S, Duarte RRR, Marrocu A, Sun Y, Sichlinger L, Matuleviciute R, Polit LD, Hanger B, Brown A, Kordasti S, Srivastava DP, Vernon AC (2023) Acute IL-6 exposure triggers canonical IL6Ra signaling in hiPSC microglia, but not neural progenitor cells. Brain Behav Immun 110:43–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Recasens M, Almolda B, Perez-Clausell J, Campbell IL, Gonzalez B, Castellano B (2021) Chronic exposure to IL-6 induces a desensitized phenotype of the microglia. J Neuroinflammation 18:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. West PK, McCorkindale AN, Guennewig B, Ashhurst TM, Viengkhou B, Hayashida E, Jung SR, Butovsky O, Campbell IL, Hofer MJ (2022) The cytokines interleukin-6 and interferon-alpha induce distinct microglia phenotypes. J Neuroinflammation 19:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen XL, Wang Y, Peng WW, Zheng YJ, Zhang TN, Wang PJ, Huang JD, Zeng QY (2018) Effects of interleukin-6 and IL-6/AMPK signaling pathway on mitochondrial biogenesis and astrocytes viability under experimental septic condition. Int Immunopharmacol 59:287–294

    Article  CAS  PubMed  Google Scholar 

  55. Gu Y, He M, Zhou X, Liu J, Hou N, Bin T, Zhang Y, Li T, Chen J (2016) Endogenous IL-6 of mesenchymal stem cell improves behavioral outcome of hypoxic-ischemic brain damage neonatal rats by supressing apoptosis in astrocyte. Sci Rep 6:18587

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. Meares GP, Ma X, Qin H, Benveniste EN (2012) Regulation of CCL20 expression in astrocytes by IL-6 and IL-17. Glia 60:771–781

    Article  PubMed  Google Scholar 

  57. Levison SW, Jiang FJ, Stoltzfus OK, Ducceschi MH (2000) IL-6-type cytokines enhance epidermal growth factor-stimulated astrocyte proliferation. Glia 32:328–337

    Article  CAS  PubMed  Google Scholar 

  58. Marz P, Heese K, Dimitriades-Schmutz B, Rose-John S, Otten U (1999) Role of interleukin-6 and soluble IL-6 receptor in region-specific induction of astrocytic differentiation and neurotrophin expression. Glia 26:191–200

    Article  CAS  PubMed  Google Scholar 

  59. Faust TE, Schafer DP (2021) IL-6 boosts synaptogenesis STAT! Immunity 54:2444–2446

    Article  CAS  PubMed  Google Scholar 

  60. Gruol DL (2015) IL-6 regulation of synaptic function in the CNS. Neuropharmacology 96:42–54

    Article  CAS  PubMed  Google Scholar 

  61. Rudolph MD, Graham AM, Feczko E, Miranda-Dominguez O, Rasmussen JM, Nardos R, Entringer S, Wadhwa PD, Buss C, Fair DA (2018) Maternal IL-6 during pregnancy can be estimated from newborn brain connectivity and predicts future working memory in offspring. Nat Neurosci 21:765–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mirabella F, Desiato G, Mancinelli S, Fossati G, Rasile M, Morini R, Markicevic M, Grimm C, Amegandjin C, Termanini A, Peano C, Kunderfranco P, di Cristo G, Zerbi V, Menna E, Lodato S, Matteoli M, Pozzi D (2021) Prenatal interleukin 6 elevation increases glutamatergic synapse density and disrupts hippocampal connectivity in offspring. Immunity 54:2611-2631 e2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25:59–70

    Article  CAS  PubMed  Google Scholar 

  64. Joseph G, Bryan J, Tricia J, Jessica R, Kezia S, Sarah T, Jennifer W (2023) 2023 Alzheimer’s disease facts and figures. Alzheimers Dement 19:1598–1695

    Article  Google Scholar 

  65. Hansson O, Edelmayer RM, Boxer AL, Carrillo MC, Mielke MM, Rabinovici GD, Salloway S, Sperling R, Zetterberg H, Teunissen CE (2022) The Alzheimer’s Association appropriate use recommendations for blood biomarkers in Alzheimer’s disease. Alzheimers Dement 18:2669–2686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gustavsson A, Norton N, Fast T, Frolich L, Georges J, Holzapfel D, Kirabali T, Krolak-Salmon P, Rossini PM, Ferretti MT, Lanman L, Chadha AS, van der Flier WM (2023) Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimers Dement 19:658–670

    Article  PubMed  Google Scholar 

  67. Lyra ESNM, Goncalves RA, Pascoal TA, Lima-Filho RAS, Resende EPF, Vieira ELM, Teixeira AL, de Souza LC, Peny JA, Fortuna JTS, Furigo IC, Hashiguchi D, Miya-Coreixas VS, Clarke JR, Abisambra JF, Longo BM, Donato J Jr, Fraser PE, Rosa-Neto P, Caramelli P, Ferreira ST, De Felice FG (2021) Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer’s disease. Transl Psychiatry 11:251

    Article  Google Scholar 

  68. Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement 12:719–732

    Article  PubMed  Google Scholar 

  69. Quintanilla RA, Orellana DI, Gonzalez-Billault C, Maccioni RB (2004) Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp Cell Res 295:245–257

    Article  CAS  PubMed  Google Scholar 

  70. Rochfort KD, Collins LE, Murphy RP, Cummins PM (2014) Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions. PLoS ONE 9:e101815

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  71. Zenaro E, Pietronigro E, Della Bianca V, Piacentino G, Marongiu L, Budui S, Turano E, Rossi B, Angiari S, Dusi S, Montresor A, Carlucci T, Nani S, Tosadori G, Calciano L, Catalucci D, Berton G, Bonetti B, Constantin G (2015) Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med 21:880–886

    Article  CAS  PubMed  Google Scholar 

  72. Shen XN, Niu LD, Wang YJ, Cao XP, Liu Q, Tan L, Zhang C, Yu JT (2019) Inflammatory markers in Alzheimer’s disease and mild cognitive impairment: a meta-analysis and systematic review of 170 studies. J Neurol Neurosurg Psychiatry 90:590–598

    Article  PubMed  Google Scholar 

  73. Kaur D, Sharma V, Deshmukh R (2019) Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology 27:663–677

    Article  PubMed  Google Scholar 

  74. Gulmammadli N, Konukoglu D, Merve Kurtulus E, Tezen D, Ibrahim Erbay M, Bozluolcay M (2022) Serum sirtuin-1, HMGB1-TLR4, NF-KB and IL-6 levels in Alzheimer’s: the relation between neuroinflammatory pathway and severity of dementia. Curr Alzheimer Res. 19:841–848

    Article  CAS  Google Scholar 

  75. Wang SS, Li XH, Liu P, Li J, Liu L (2022) The relationship between Alzheimer’s disease and intestinal microflora structure and inflammatory factors. Front Aging Neurosci 14:972982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Brosseron F, Maass A, Kleineidam L, Ravichandran KA, Kolbe CC, Wolfsgruber S, Santarelli F, Hasler LM, McManus R, Ising C, Roske S, Peters O, Cosma NC, Schneider LS, Wang X, Priller J, Spruth EJ, Altenstein S, Schneider A, Fliessbach K, Wiltfang J, Schott BH, Buerger K, Janowitz D, Dichgans M, Perneczky R, Rauchmann BS, Teipel S, Kilimann I, Gorss D, Laske C, Munk MH, Duzel E, Yakupow R, Dobisch L, Metzger CD, Glanz W, Ewers M, Dechent P, Haynes JD, Scheffler K, Roy N, Rostamzadeh A, Spottke A, Ramirez A, Mengel D, Synofzik M, Jucker M, Latz E, Jessen F, Wagner M, Heneka MT, group Ds, (2023) Serum IL-6, sAXL, and YKL-40 as systemic correlates of reduced brain structure and function in Alzheimer’s disease: results from the DELCODE study. Alzheimers Res Ther 15:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lopez-Rodriguez AB, Hennessy E, Murray CL, Nazmi A, Delaney HJ, Healy D, Fagan SG, Rooney M, Stewart E, Lewis A, de Barra N, Scarry P, Riggs-Miller L, Boche D, Cunningham MO, Cunningham C (2021) Acute systemic inflammation exacerbates neuroinflammation in Alzheimer’s disease: IL-1beta drives amplified responses in primed astrocytes and neuronal network dysfunction. Alzheimers Dement 17:1735–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Leonardo S, Fregni F (2023) Association of inflammation and cognition in the elderly: a systematic review and meta-analysis. Front Aging Neurosci 15:1069439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Anuradha U, Kumar A, Singh RK (2022) The clinical correlation of proinflammatory and anti-inflammatory biomarkers with Alzheimer disease: a meta-analysis. Neurol Sci 43:285–298

    Article  PubMed  Google Scholar 

  80. Wang J, Zhou F, Xiong CE, Wang GP, Chen LW, Zhang YT, Qi SG, Wang ZH, Mei C, Xu YJ, Zhan JB, Cheng J (2023) Serum sirtuin1: a potential blood biomarker for early diagnosis of Alzheimer’s disease. Aging (Albany NY) 15:9464–9478

    Article  PubMed  Google Scholar 

  81. Lai KSP, Liu CS, Rau A, Lanctot KL, Kohler CA, Pakosh M, Carvalho AF, Herrmann N (2017) Peripheral inflammatory markers in Alzheimer’s disease: a systematic review and meta-analysis of 175 studies. J Neurol Neurosurg Psychiatry 88:876–882

    Article  PubMed  Google Scholar 

  82. Zhao J, Liu P, Hua L, Yang X, Zeng Z, Li X, Wang S, Liu Y, Liu Y, Wang Y (2020) Haplotype analysis on association between variants of interleukin 6 (IL-6) and late-onset Alzheimer’s disease in a Chinese Han population. Exp Gerontol 131:110813

    Article  CAS  PubMed  Google Scholar 

  83. Rasmussen L, Delabio R, Horiguchi L, Mizumoto I, Terazaki CR, Mazzotti D, Bertolucci PH, Pinhel MA, Souza D, Krieger H, Kawamata C, Minett T, Smith MC, Payao SL (2013) Association between interleukin 6 gene haplotype and Alzheimer’s disease: a Brazilian case-control study. J Alzheimers Dis 36:733–738

    Article  CAS  PubMed  Google Scholar 

  84. Faltraco F, Burger K, Zill P, Teipel SJ, Moller HJ, Hampel H, Bondy B, Ackenheil M (2003) Interleukin-6-174 G/C promoter gene polymorphism C allele reduces Alzheimer’s disease risk. J Am Geriatr Soc 51:578–579

    Article  PubMed  Google Scholar 

  85. Sawkulycz X, Bradburn S, Robinson A, Payton A, Pendleton N, Murgatroyd C (2020) Regulation of interleukin 6 by a polymorphic CpG within the frontal cortex in Alzheimer’s disease. Neurobiol Aging 92:75–81

    Article  CAS  PubMed  Google Scholar 

  86. Yang W, Liu Y, Xu QQ, Xian YF, Lin ZX (2020) Sulforaphene ameliorates neuroinflammation and hyperphosphorylated tau protein via regulating the PI3K/Akt/GSK-3beta pathway in experimental models of Alzheimer’s disease. Oxid Med Cell Longev 2020:4754195

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kaur S, Bansal Y (2022) Design, molecular docking, synthesis and evaluation of xanthoxylin hybrids as dual inhibitors of IL-6 and acetylcholinesterase for Alzheimer’s disease. Bioorg Chem 121:105670

    Article  CAS  PubMed  Google Scholar 

  88. Chen S, Liu H, Wang S, Jiang H, Gao L, Wang L, Teng L, Wang C, Wang D (2022) The neuroprotection of verbascoside in Alzheimer’s disease mediated through mitigation of neuroinflammation via blocking NF-kappaB-p65 signaling. Nutrients 14(1):1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kazmi I, Al-Abbasi FA, Afzal M, Shahid Nadeem M, Altayb HN (2023) Sterubin protects against chemically-induced Alzheimer’s disease by reducing biomarkers of inflammation- IL-6/ IL-beta/ TNF-alpha and oxidative stress- SOD/MDA in rats. Saudi J Biol Sci 30:103560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Elcioglu HK, Aslan E, Ahmad S, Alan S, Salva E, Elcioglu OH, Kabasakal L (2016) Tocilizumab’s effect on cognitive deficits induced by intracerebroventricular administration of streptozotocin in Alzheimer’s model. Mol Cell Biochem 420:21–28

    Article  CAS  PubMed  Google Scholar 

  91. Escrig A, Canal C, Sanchis P, Fernandez-Gayol O, Montilla A, Comes G, Molinero A, Giralt M, Gimenez-Llort L, Becker-Pauly C, Rose-John S, Hidalgo J (2019) IL-6 trans-signaling in the brain influences the behavioral and physio-pathological phenotype of the Tg2576 and 3xTgAD mouse models of Alzheimer’s disease. Brain Behav Immun 82:145–159

    Article  CAS  PubMed  Google Scholar 

  92. Tolosa E, Garrido A, Scholz SW, Poewe W (2021) Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol 20:385–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rodriguez M, Rodriguez-Sabate C, Morales I, Sanchez A, Sabate M (2015) Parkinson’s disease as a result of aging. Aging Cell 14:293–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Reich SG, Savitt JM (2019) Parkinson’s disease. Med Clin North Am 103:337–350

    Article  PubMed  Google Scholar 

  95. Armstrong MJ, Okun MS (2020) Diagnosis and treatment of parkinson disease: a review. JAMA 323:548–560

    Article  PubMed  Google Scholar 

  96. Cacabelos R (2017) Parkinson’s disease: from pathogenesis to pharmacogenomics. Int J Mol Sci 18(3):551

    Article  PubMed  PubMed Central  Google Scholar 

  97. Schapira AH, Jenner P (2011) Etiology and pathogenesis of Parkinson’s disease. Mov Disord 26:1049–1055

    Article  PubMed  Google Scholar 

  98. Wakabayashi K, Tanji K, Odagiri S, Miki Y, Mori F, Takahashi H (2013) The Lewy body in Parkinson’s disease and related neurodegenerative disorders. Mol Neurobiol 47:495–508

    Article  CAS  PubMed  Google Scholar 

  99. Cong S, Xiang C, Zhang S, Zhang T, Wang H, Cong S (2022) Prevalence and clinical aspects of depression in Parkinson’s disease: a systematic review and meta-analysis of 129 studies. Neurosci Biobehav Rev 141:104749

    Article  PubMed  Google Scholar 

  100. Liu TW, Chen CM, Chang KH (2022) Biomarker of neuroinflammation in Parkinson’s disease. Int J Mol Sci 23(8):4148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Marogianni C, Sokratous M, Dardiotis E, Hadjigeorgiou GM, Bogdanos D, Xiromerisiou G (2020) Neurodegeneration and inflammation-an interesting interplay in Parkinson’s disease. Int J Mol Sci 21(22):8421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee SYH, Yates NJ, Tye SJ (2022) Inflammatory mechanisms in parkinson’s disease: from pathogenesis to targeted therapies. Neuroscientist 28:485–506

    Article  CAS  PubMed  Google Scholar 

  103. Rabenstein M, Besong Agbo D, Wolf E, Dams J, Nicolai M, Roeder A, Bacher M, Dodel RC, Noelker C (2019) Effect of naturally occurring alpha-synuclein-antibodies on toxic alpha-synuclein-fragments. Neurosci Lett 704:181–188

    Article  CAS  PubMed  Google Scholar 

  104. Nash Y, Schmukler E, Trudler D, Pinkas-Kramarski R, Frenkel D (2017) DJ-1 deficiency impairs autophagy and reduces alpha-synuclein phagocytosis by microglia. J Neurochem 143:584–594

    Article  CAS  PubMed  Google Scholar 

  105. Dohgu S, Takata F, Matsumoto J, Kimura I, Yamauchi A, Kataoka Y (2019) Monomeric alpha-synuclein induces blood-brain barrier dysfunction through activated brain pericytes releasing inflammatory mediators in vitro. Microvasc Res 124:61–66

    Article  CAS  PubMed  Google Scholar 

  106. Du T, Wu Z, Luo H, Lu S, Ma K (2019) Injection of alpha-syn-98 aggregates into the brain triggers alpha-synuclein pathology and an inflammatory response. Front Mol Neurosci 12:189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Li XZ, Bai LM, Yang YP, Luo WF, Hu WD, Chen JP, Mao CJ, Liu CF (2009) Effects of IL-6 secreted from astrocytes on the survival of dopaminergic neurons in lipopolysaccharide-induced inflammation. Neurosci Res 65:252–258

    Article  CAS  PubMed  Google Scholar 

  108. Ma J, Gao J, Niu M, Zhang X, Wang J, Xie A (2020) P2X4R overexpression upregulates interleukin-6 and exacerbates 6-OHDA-induced dopaminergic degeneration in a rat model of PD. Front Aging Neurosci 12:580068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sterling JK, Kam TI, Guttha S, Park H, Baumann B, Mehrabani-Tabari AA, Schultz H, Anderson B, Alnemri A, Chou SC, Troncoso JC, Dawson VL, Dawson TM, Dunaief JL (2022) Interleukin-6 triggers toxic neuronal iron sequestration in response to pathological alpha-synuclein. Cell Rep 38:110358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sommer A, Marxreiter F, Krach F, Fadler T, Grosch J, Maroni M, Graef D, Eberhardt E, Riemenschneider MJ, Yeo GW, Kohl Z, Xiang W, Gage FH, Winkler J, Prots I, Winner B (2018) Th17 lymphocytes induce neuronal cell death in a human iPSC-based model of Parkinson’s disease. Cell Stem Cell 23(123–131):e126

    Google Scholar 

  111. Gate D, Tapp E, Leventhal O, Shahid M, Nonninger TJ, Yang AC, Strempfl K, Unger MS, Fehlmann T, Oh H, Channappa D, Henderson VW, Keller A, Aigner L, Galasko DR, Davis MM, Poston KL, Wyss-Coray T (2021) CD4(+) T cells contribute to neurodegeneration in Lewy body dementia. Science 374:868–874

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  112. Chen X, Hu Y, Cao Z, Liu Q, Cheng Y (2018) Cerebrospinal fluid inflammatory cytokine aberrations in alzheimer’s disease, parkinson’s disease and amyotrophic lateral sclerosis: a systematic review and meta-analysis. Front Immunol 9:2122

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hofmann KW, Schuh AF, Saute J, Townsend R, Fricke D, Leke R, Souza DO, Portela LV, Chaves ML, Rieder CR (2009) Interleukin-6 serum levels in patients with Parkinson’s disease. Neurochem Res 34:1401–1404

    Article  CAS  PubMed  Google Scholar 

  114. Pereira JR, Santos LVD, Santos RMS, Campos ALF, Pimenta AL, de Oliveira MS, Bacheti GG, Rocha NP, Teixeira AL, Christo PP, Scalzo PL (2016) IL-6 serum levels are elevated in Parkinson’s disease patients with fatigue compared to patients without fatigue. J Neurol Sci 370:153–156

    Article  CAS  PubMed  Google Scholar 

  115. Green HF, Khosousi S, Svenningsson P (2019) Plasma IL-6 and IL-17A correlate with severity of motor and non-motor symptoms in Parkinson’s disease. J Parkinsons Dis 9:705–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kim R, Kim HJ, Shin JH, Lee CY, Jeon SH, Jeon B (2022) Serum inflammatory markers and progression of nonmotor symptoms in early Parkinson’s disease. Mov Disord 37:1535–1541

    Article  CAS  PubMed  Google Scholar 

  117. Dufek M, Rektorova I, Thon V, Lokaj J, Rektor I (2015) Interleukin-6 May contribute to mortality in parkinson’s disease patients: a 4-year prospective study. Parkinsons Dis 2015:898192

    PubMed  PubMed Central  Google Scholar 

  118. Bottigliengo D, Foco L, Seibler P, Klein C, Konig IR, Del Greco MF (2022) A Mendelian randomization study investigating the causal role of inflammation on Parkinson’s disease. Brain 145:3444–3453

    Article  PubMed  PubMed Central  Google Scholar 

  119. Vijiaratnam N, Simuni T, Bandmann O, Morris HR, Foltynie T (2021) Progress towards therapies for disease modification in Parkinson’s disease. Lancet Neurol 20:559–572

    Article  CAS  PubMed  Google Scholar 

  120. Yang X, Yv Q, Ye F, Chen S, He Z, Li W, Dong F (2022) Echinacoside protects dopaminergic neurons through regulating IL-6/JAK2/STAT3 pathway in Parkinson’s disease model. Front Pharmacol 13:848813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, Sobue G (2022) Amyotrophic lateral sclerosis. Lancet 400:1363–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wijesekera LC, Leigh PN (2009) Amyotrophic lateral sclerosis. Orphanet J Rare Dis 4:3

    Article  PubMed  PubMed Central  Google Scholar 

  123. Hu Y, Cao C, Qin XY, Yu Y, Yuan J, Zhao Y, Cheng Y (2017) Increased peripheral blood inflammatory cytokine levels in amyotrophic lateral sclerosis: a meta-analysis study. Sci Rep 7:9094

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  124. Ono S, Hu J, Shimizu N, Imai T, Nakagawa H (2001) Increased interleukin-6 of skin and serum in amyotrophic lateral sclerosis. J Neurol Sci 187:27–34

    Article  CAS  PubMed  Google Scholar 

  125. Moreau C, Devos D, Brunaud-Danel V, Defebvre L, Perez T, Destee A, Tonnel AB, Lassalle P, Just N (2005) Elevated IL-6 and TNF-alpha levels in patients with ALS: inflammation or hypoxia? Neurology 65:1958–1960

    Article  CAS  PubMed  Google Scholar 

  126. Chen Y, Xia K, Chen L, Fan D (2019) Increased interleukin-6 levels in the astrocyte-derived exosomes of sporadic amyotrophic lateral sclerosis patients. Front Neurosci 13:574

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lu CH, Allen K, Oei F, Leoni E, Kuhle J, Tree T, Fratta P, Sharma N, Sidle K, Howard R, Orrell R, Fish M, Greensmith L, Pearce N, Gallo V, Malaspina A (2016) Systemic inflammatory response and neuromuscular involvement in amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflamm 3:e244

    Article  PubMed  PubMed Central  Google Scholar 

  128. Moreno-Martinez L, de la Torre M, Toivonen JM, Zaragoza P, Garcia-Redondo A, Calvo AC, Osta R (2019) Circulating Cytokines could not be good prognostic biomarkers in a mouse model of amyotrophic lateral sclerosis. Front Immunol 10:801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Garbuzova-Davis S, Ehrhart J, Sanberg PR, Borlongan CV (2018) Potential role of humoral IL-6 cytokine in mediating pro-inflammatory endothelial cell response in amyotrophic lateral sclerosis. Int J Mol Sci 19(2):423

    Article  PubMed  PubMed Central  Google Scholar 

  130. Mizwicki MT, Fiala M, Magpantay L, Aziz N, Sayre J, Liu G, Siani A, Chan D, Martinez-Maza O, Chattopadhyay M, La Cava A (2012) Tocilizumab attenuates inflammation in ALS patients through inhibition of IL6 receptor signaling. Am J Neurodegener Dis 1:305–315

    PubMed  PubMed Central  Google Scholar 

  131. Fiala M, Mizwicki MT, Weitzman R, Magpantay L, Nishimoto N (2013) Tocilizumab infusion therapy normalizes inflammation in sporadic ALS patients. Am J Neurodegener Dis 2:129–139

    PubMed  PubMed Central  Google Scholar 

  132. Milligan C, Atassi N, Babu S, Barohn RJ, Caress JB, Cudkowicz ME, Evora A, Hawkins GA, Wosiski-Kuhn M, Macklin EA, Shefner JM, Simmons Z, Bowser RP, Ladha SS (2021) Tocilizumab is safe and tolerable and reduces C-reactive protein concentrations in the plasma and cerebrospinal fluid of ALS patients. Muscle Nerve 64:309–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Moreno-Martinez L, de la Torre M, Munoz MJ, Zaragoza P, Aguilera J, Calvo AC, Osta R (2020) Neuroprotective fragment C of tetanus toxin modulates IL-6 in an ALS mouse model. Toxins (Basel) 12(5):330

    Article  CAS  PubMed  Google Scholar 

  134. Walker FO (2007) Huntington’s disease. Lancet 369:218–228

    Article  CAS  PubMed  Google Scholar 

  135. McColgan P, Tabrizi SJ (2018) Huntington’s disease: a clinical review. Eur J Neurol 25:24–34

    Article  CAS  PubMed  Google Scholar 

  136. Saba J, Couselo FL, Bruno J, Carniglia L, Durand D, Lasaga M, Caruso C (2022) Neuroinflammation in Huntington’s disease: a starring role for astrocyte and microglia. Curr Neuropharmacol 20:1116–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Corey-Bloom J, Fischer RS, Kim A, Snell C, Parkin GM, Granger DA, Granger SW, Thomas EA (2020) Levels of interleukin-6 in saliva, but not plasma, correlate with clinical metrics in Huntington’s disease patients and healthy control subjects. Int J Mol Sci 21(17):6363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yang HM, Yang S, Huang SS, Tang BS, Guo JF (2017) Microglial activation in the pathogenesis of Huntington’s disease. Front Aging Neurosci 9:193

    Article  PubMed  PubMed Central  Google Scholar 

  139. Chang KH, Wu YR, Chen YC, Chen CM (2015) Plasma inflammatory biomarkers for Huntington’s disease patients and mouse model. Brain Behav Immun 44:121–127

    Article  CAS  PubMed  Google Scholar 

  140. Bjorkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, Raibon E, Lee RV, Benn CL, Soulet D, Magnusson A, Woodman B, Landles C, Pouladi MA, Hayden MR, Khalili-Shirazi A, Lowdell MW, Brundin P, Bates GP, Leavitt BR, Moller T, Tabrizi SJ (2008) A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med 205:1869–1877

    Article  PubMed  PubMed Central  Google Scholar 

  141. Jang M, Lee SE, Cho IH (2018) Adeno-associated viral vector serotype DJ-mediated overexpression of N171–82Q-mutant Huntingtin in the striatum of juvenile mice is a new model for Huntington’s disease. Front Cell Neurosci 12:157

    Article  PubMed  PubMed Central  Google Scholar 

  142. Rodrigues FB, Byrne LM, McColgan P, Robertson N, Tabrizi SJ, Zetterberg H, Wild EJ (2016) Cerebrospinal fluid inflammatory biomarkers reflect clinical severity in Huntington’s disease. PLoS ONE 11:e0163479

    Article  PubMed  PubMed Central  Google Scholar 

  143. Valadao PAC, Oliveira BDS, Joviano-Santos JV, Vieira ELM, Rocha NP, Teixeira AL, Guatimosim C, de Miranda AS (2019) Inflammatory changes in peripheral organs in the BACHD murine model of Huntington’s disease. Life Sci 232:116653

    Article  CAS  PubMed  Google Scholar 

  144. El-Abhar H, Abd El Fattah MA, Wadie W, El-Tanbouly DM (2018) Cilostazol disrupts TLR-4, Akt/GSK-3beta/CREB, and IL-6/JAK-2/STAT-3/SOCS-3 crosstalk in a rat model of Huntington’s disease. PLoS ONE 13:e0203837

    Article  PubMed  PubMed Central  Google Scholar 

  145. Wertz MH, Pineda SS, Lee H, Kulicke R, Kellis M, Heiman M (2020) Interleukin-6 deficiency exacerbates Huntington’s disease model phenotypes. Mol Neurodegener 15:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Benedict RHB, Amato MP, DeLuca J, Geurts JJG (2020) Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues. Lancet Neurol 19:860–871

    Article  PubMed  PubMed Central  Google Scholar 

  147. Giovannoni G, Hawkes CH, Lechner-Scott J, Levy M, Waubant E (2020) Ageing and multiple sclerosis. Mult Scler Relat Disord 38:101953

    Article  PubMed  Google Scholar 

  148. Graves JS, Krysko KM, Hua LH, Absinta M, Franklin RJM, Segal BM (2023) Ageing and multiple sclerosis. Lancet Neurol 22:66–77

    Article  PubMed  Google Scholar 

  149. Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, Robertson N, La Rocca N, Uitdehaag B, van der Mei I, Wallin M, Helme A, Angood Napier C, Rijke N, Baneke P (2020) Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult Scler. 26:1816–1821

    Article  PubMed  PubMed Central  Google Scholar 

  150. Stelmasiak Z, Koziol-Montewka M, Dobosz B, Rejdak K, Bartosik-Psujek H, Mitosek-Szewczyk K, Belniak-Legiec E (2000) Interleukin-6 concentration in serum and cerebrospinal fluid in multiple sclerosis patients. Med Sci Monit 6:1104–1108

    CAS  PubMed  Google Scholar 

  151. Drehmer E, Platero JL, Carrera-Julia S, Moreno ML, Tvarijonaviciute A, Navarro MA, Lopez-Rodriguez MM, Orti JER (2020) The relation between eating habits and abdominal fat, anthropometry, PON1 and IL-6 levels in patients with multiple sclerosis. Nutrients 12(3):744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bongioanni P, Mosti S, Romano MR, Lombardo F, Moscato G, Meucci G (2000) Increased T-lymphocyte interleukin-6 binding in patients with multiple sclerosis. Eur J Neurol 7:291–297

    Article  CAS  PubMed  Google Scholar 

  153. Serada S, Fujimoto M, Mihara M, Koike N, Ohsugi Y, Nomura S, Yoshida H, Nishikawa T, Terabe F, Ohkawara T, Takahashi T, Ripley B, Kimura A, Kishimoto T, Naka T (2008) IL-6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Th1 cells in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 105:9041–9046

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  154. Stampanoni Bassi M, Iezzi E, Mori F, Simonelli I, Gilio L, Buttari F, Sica F, De Paolis N, Mandolesi G, Musella A, De Vito F, Dolcetti E, Bruno A, Furlan R, Finardi A, Marfia GA, Centonze D, Rizzo FR (2019) Interleukin-6 disrupts synaptic plasticity and impairs tissue damage compensation in multiple sclerosis. Neurorehabil Neural Repair 33:825–835

    Article  PubMed  Google Scholar 

  155. Bruno A, Dolcetti E, Azzolini F, Moscatelli A, Gambardella S, Ferese R, Rizzo FR, Gilio L, Iezzi E, Galifi G, Borrelli A, Buttari F, Furlan R, Finardi A, De Vito F, Musella A, Guadalupi L, Mandolesi G, Centonze D, Stampanoni Bassi M (2022) Interleukin 6 SNP rs1818879 regulates radiological and inflammatory activity in multiple sclerosis. Genes (Basel) 13(5):897

    Article  CAS  PubMed  Google Scholar 

  156. Platero JL, Cuerda-Ballester M, Ibanez V, Sancho D, Lopez-Rodriguez MM, Drehmer E, Orti JER (2020) The Impact of Coconut Oil and Epigallocatechin Gallate on the Levels of IL-6, Anxiety and Disability in Multiple Sclerosis Patients. Nutrients 12(2):305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Marucci G, Buccioni M, Ben DD, Lambertucci C, Volpini R, Amenta F (2021) Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 190:108352

    Article  CAS  PubMed  Google Scholar 

  158. Jaiswal MK (2019) Riluzole and edaravone: a tale of two amyotrophic lateral sclerosis drugs. Med Res Rev 39:733–748

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Chenguang Zhang and Wenting Hou for critically reviewing the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (No. 82003809), Beijing Natural Science Foundation (No. 7222157) and Beijing Hospital Nova Project (BJ-2020-087).

Author information

Authors and Affiliations

Authors

Contributions

CS and CZ: designed the study, and drafted the manuscript, CZ: participated in the revision of the manuscript.

Corresponding authors

Correspondence to Chao Zhang or Chuanbao Zhang.

Ethics declarations

Conflict of Interest

The authors declared that no potential conflicts of interest exist.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Written informed consent for publication was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, C., Zhang, C. & Zhang, C. The Role of IL-6 in Neurodegenerative Disorders. Neurochem Res 49, 834–846 (2024). https://doi.org/10.1007/s11064-023-04085-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04085-6

Keywords

Navigation