Skip to main content

Advertisement

Log in

Lateral Habenula Neurons Signal Cold Aversion and Participate in Cold Aversion

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The aversion to cold is a fundamental motivated behavior that contributes to the body temperature homeostasis. However, the involvement of the lateral habenula (LHb) as a regulatory hub for negative emotions in this physiological process remains uninvestigated. In this study, we demonstrate an elevation in the population activity of LHb neurons following exposure to cold stimuli. Additionally, we establish the necessity of Vglut2-expressing neurons within the LHb for the encoding of cold aversion behaviors. Furthermore, we have elucidated a neural circuit from excitatory neurons of the dorsomedial hypothalamus (DMH) to LHb that plays a crucial role in this progress. Manipulation of the DMH-LHb circuit has a significant impact on cold aversion behavior in mice. It is worth noting that this circuit does not exhibit any noticeable effects on autonomic thermoregulation or depression-like behavior. The identification of these neural mechanisms involved in behavioral thermoregulation provides a promising avenue for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Adedokun KA, Olarinmoye AO, Mustapha JO, Kamorudeen RT (2020) A close look at the biology of SARS-CoV-2, and the potential influence of weather conditions and seasons on COVID-19 case spread. Infect Dis Poverty 9:77

    Article  PubMed  PubMed Central  Google Scholar 

  2. Eklund LM, Sköndal Å, Tufvesson E, Sjöström R, Söderström L, Hanstock HG et al (2022) Cold air exposure at – 15 °C induces more airway symptoms and epithelial stress during heavy exercise than rest without aggravated airway constriction. Eur J Appl Physiol 122:2533–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu C, Yavar Z, Sun Q (2015) Cardiovascular response to thermoregulatory challenges. Am J Physiol Heart Circ Physiol 309:H1793–H1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen R, Yin P, Wang L, Liu C, Niu Y, Wang W et al (2018) Association between ambient temperature and mortality risk and burden: time series study in 272 main Chinese cities. BMJ 363:k4306

    Article  PubMed  PubMed Central  Google Scholar 

  5. Burkart KG, Brauer M, Aravkin AY, Godwin WW, Hay SI, He J et al (2021) Estimating the cause-specific relative risks of non-optimal temperature on daily mortality: a two-part modelling approach applied to the global burden of disease study. Lancet (London England) 398:685–697

    Article  PubMed  Google Scholar 

  6. Madden CJ, Morrison SF (2019) Central nervous system circuits that control body temperature. Neurosci Lett 696:225–232

    Article  CAS  PubMed  Google Scholar 

  7. Morrison SF, Madden CJ, Tupone D (2014) Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab 19:741–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang S, Tan YL, Wu X, Wang J, Sun J, Liu A et al (2021) An mPOA-ARCAgRP pathway modulates cold-evoked eating behavior. Cell Rep 36:109502

    Article  CAS  PubMed  Google Scholar 

  9. Yahiro T, Kataoka N, Nakamura K (2023) Two ascending thermosensory pathways from the lateral parabrachial nucleus that mediate behavioral and autonomous thermoregulation. J Neurosci. https://doi.org/10.1523/JNEUROSCI.0643-23.2023

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kanai M, Kamiizawa R, Hitora-Imamura N, Minami M (2022) Exposure to hot and cold environments activates neurons projecting from the paraventricular thalamic nucleus to brain regions related to approach and avoidance behaviors. J Therm Biol 103:103157

    Article  CAS  PubMed  Google Scholar 

  11. Li M (2022) Lateral habenula neurocircuits mediate the maternal disruptive effect of maternal stress: a hypothesis. Zool Res 43:166–175

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hitti FL, Parker D, Yang AI, Brem S, Verma R (2022) Laterality and sex differences of human lateral habenula afferent and efferent fiber tracts. Front NeuroSci 16:837624

    Article  PubMed  PubMed Central  Google Scholar 

  13. Metzger M, Souza R, Lima LB, Bueno D, Gonçalves L, Sego C et al (2021) Habenular connections with the dopaminergic and serotonergic system and their role in stress-related psychiatric disorders. Eur J Neurosci 53:65–88

    Article  CAS  PubMed  Google Scholar 

  14. Hu H, Cui Y, Yang Y (2020) Circuits and functions of the lateral habenula in health and in disease. Nat Rev Neurosci 21:277–295

    Article  CAS  PubMed  Google Scholar 

  15. Aizawa H, Kobayashi M, Tanaka S, Fukai T, Okamoto H (2012) Molecular characterization of the subnuclei in rat habenula. J Comp Neurol 520:4051–4066

    Article  CAS  PubMed  Google Scholar 

  16. Hikosaka O, Sesack SR, Lecourtier L, Shepard PD (2008) Habenula: crossroad between the basal ganglia and the limbic system. J Neurosci Off J Soc Neurosci 28:11825–11829

    Article  CAS  Google Scholar 

  17. Liu C, Liu J, Zhou L, He H, Zhang Y, Cai S et al (2021) Lateral habenula glutamatergic neurons modulate isoflurane anesthesia in mice. Front Mol Neurosci 14:628996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang B, Gao Y, Li Y, Yang J, Zhao H (2016) Sleep deprivation influences circadian gene expression in the lateral habenula. Behav Neurol 2016:7919534

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhou W, Jin Y, Meng Q, Zhu X, Bai T, Tian Y et al (2019) A neural circuit for comorbid depressive symptoms in chronic pain. Nat Neurosci 22:1649–1658

    Article  CAS  PubMed  Google Scholar 

  20. Dai D, Li W, Chen A, Gao X-F, Xiong L (2022) Lateral Habenula and its potential roles in pain and related behaviors. ACS Chem Neurosci 13:1108–1118

    Article  CAS  PubMed  Google Scholar 

  21. Nuno-Perez A, Trusel M, Lalive AL, Congiu M, Gastaldo D, Tchenio A et al (2021) Stress undermines reward-guided cognitive performance through synaptic depression in the lateral habenula. Neuron. https://doi.org/10.1016/j.neuron.2021.01.008

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xin J, Shan W, Li J, Yu H, Zuo Z (2022) Activation of the lateral habenula-ventral tegmental area neural circuit contributes to postoperative cognitive dysfunction in mice, vol 9. Advanced Science, Weinheim, p e2202228

    Google Scholar 

  23. Stamatakis AM, Van Swieten M, Basiri ML, Blair GA, Kantak P, Stuber GD (2016) Lateral hypothalamic area glutamatergic neurons and their projections to the lateral habenula regulate feeding and reward. J Neurosci Off J Soc Neurosci 36:302–311

    Article  CAS  Google Scholar 

  24. Mondoloni S, Mameli M, Congiu M (2022) Reward and aversion encoding in the lateral habenula for innate and learned behaviours. Transl Psychiatry 12:3

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lazaridis I, Tzortzi O, Weglage M, Märtin A, Xuan Y, Parent M et al (2019) A hypothalamus-habenula circuit controls aversion. Mol Psychiatry 24:1351–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park H, Rhee J, Lee S, Chung C (2017) Selectively impaired endocannabinoid-dependent long-term depression in the lateral habenula in an animal model of depression. Cell Rep 20:289–296

    Article  CAS  PubMed  Google Scholar 

  27. Zhao Z-D, Yang WZ, Gao C, Fu X, Zhang W, Zhou Q et al (2017) A hypothalamic circuit that controls body temperature. Proc Natl Acad Sci USA 114:2042–2047

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Feng C, Wang Y, Zha X, Cao H, Huang S, Cao D et al (2022) Cold-sensitive ventromedial hypothalamic neurons control homeostatic thermogenesis and social interaction-associated hyperthermia. Cell Metab 34:888–901

  29. Paxinos G, Franklin KBJ (2008) The mouse brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  30. Lin W, Xu L, Zheng Y, An S, Zhao M, Hu W et al (2023) Whole-brain mapping of histaminergic projections in mouse brain. Proc Natl Acad Sci USA 120:e2216231120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li J, Fan R, Liu X, Shen X, Liu X, Zhao H (2021) The convergence of aversion and reward signals in individual neurons of the mice lateral habenula. Exp Neurol 339:113637

    Article  CAS  PubMed  Google Scholar 

  32. Morrison SF, Nakamura K (2019) Central mechanisms for thermoregulation. Annu Rev Physiol 81:285–308

    Article  CAS  PubMed  Google Scholar 

  33. Kataoka N, Hioki H, Kaneko T, Nakamura K (2014) Psychological stress activates a dorsomedial hypothalamus-medullary raphe circuit driving brown adipose tissue thermogenesis and hyperthermia. Cell Metabol 20:346–358

    Article  CAS  Google Scholar 

  34. Nollet M, Gaillard P, Minier F, Tanti A, Belzung C, Leman S (2011) Activation of orexin neurons in dorsomedial/perifornical hypothalamus and antidepressant reversal in a rodent model of depression. Neuropharmacology 61:336–346

    Article  CAS  PubMed  Google Scholar 

  35. Yang Y, Wang H, Hu J, Hu H (2018) Lateral habenula in the pathophysiology of depression. Curr Opin Neurobiol 48:90–96

    Article  CAS  PubMed  Google Scholar 

  36. Tan CL, Knight ZA (2018) Regulation of body temperature by the nervous system. Neuron 98:31–48

  37. Almeida MC, Vizin RCL, Carrettiero DC (2015) Current understanding on the neurophysiology of behavioral thermoregulation. Temperature (Austin Tex) 2:483–490

    Article  PubMed  PubMed Central  Google Scholar 

  38. Roberts WW, Martin JR (1977) Effects of lesions in central thermosensitive areas on thermoregulatory responses in rat. Physiol Behav 19:503–511

    Article  CAS  PubMed  Google Scholar 

  39. Roberts WW, Mooney RD (1974) Brain areas controlling thermoregulatory grooming, prone extension, locomotion, and tail vasodilation in rats. J Comp Physiol Psychol 86:470–480

    Article  CAS  PubMed  Google Scholar 

  40. Lumley LA, Robison CL, Chen WK, Mark B, Meyerhoff JL (2001) Vasopressin into the preoptic area increases grooming behavior in mice. Physiol Behav 73:451–455

    Article  CAS  PubMed  Google Scholar 

  41. Hainsworth FR (1968) Evaporative water loss from rats in the heat. Am J Physiol 214:979–982

    Article  CAS  PubMed  Google Scholar 

  42. Yang WZ, Du X, Zhang W, Gao C, Xie H, Xiao Y et al (2020) Parabrachial neuron types categorically encode thermoregulation variables during heat defense. Sci Adv. https://doi.org/10.1126/sciadv.abb9414

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jung S, Lee M, Kim DY, Son C, Ahn BH, Heo G et al (2022) A forebrain neural substrate for behavioral thermoregulation. Neuron 110:266–279e269

    Article  CAS  PubMed  Google Scholar 

  44. Yahiro T, Kataoka N, Nakamura Y, Nakamura K (2017) The lateral parabrachial nucleus, but not the thalamus, mediates thermosensory pathways for behavioural thermoregulation. Sci Rep 7:5031

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  45. Proulx CD, Hikosaka O, Malinow R (2014) Reward processing by the lateral habenula in normal and depressive behaviors. Nat Neurosci 17:1146–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hikosaka O (2010) The habenula: from stress evasion to value-based decision-making. Nat Rev Neurosci 11:503–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang D, Li Y, Feng Q, Guo Q, Zhou J, Luo M (2017) Learning shapes the aversion and reward responses of lateral habenula neurons. ELife. https://doi.org/10.7554/eLife.23045

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rossi MA, Basiri ML, Liu Y, Hashikawa Y, Hashikawa K, Fenno LE et al (2021) Transcriptional and functional divergence in lateral hypothalamic glutamate neurons projecting to the lateral habenula and ventral tegmental area. Neuron 109:3823–3837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Clark BJ, Sarma A, Taube JS (2009) Head direction cell instability in the anterior dorsal thalamus after lesions of the interpeduncular nucleus. J Neurosc Offl J Soc Neurosci 29:493–507

    Article  CAS  Google Scholar 

  50. Tran LT, Park S, Kim SK, Lee JS, Kim KW, Kwon O (2022) Hypothalamic control of energy expenditure and thermogenesis. Exp Mol Med 54:358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Piñol RA, Zahler SH, Li C, Saha A, Tan BK, Škop V et al (2018) Brs3 neurons in the mouse dorsomedial hypothalamus regulate body temperature, energy expenditure, and heart rate, but not food intake. Nat Neurosci 21:1530–1540

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nakamura K, Morrison SF (2011) Central efferent pathways for cold-defensive and febrile shivering. J Physiol 589:3641–3658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kokare DM, Dandekar MP, Singru PS, Gupta GL, Subhedar NK (2010) Involvement of alpha-MSH in the social isolation induced anxiety- and depression-like behaviors in rat. Neuropharmacology 58:1009–1018

    Article  CAS  PubMed  Google Scholar 

  54. Cui Y, Huang X, Huang P, Huang L, Feng Z, Xiang X et al (2022) Reward ameliorates depressive-like behaviors via inhibition of the substantia innominata to the lateral habenula projection. Sci Adv 8:eabn0193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S et al (2018) Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 554:317–322

    Article  CAS  PubMed  ADS  Google Scholar 

  56. Shabel SJ, Wang C, Monk B, Aronson S, Malinow R (2019) Stress transforms lateral habenula reward responses into punishment signals. Proc Natl Acad Sci USA 116:12488–12493

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  57. Lal NK, Le P, Aggarwal S, Zhang A, Wang K, Qi T et al (2023) Xiphoid nucleus of the midline thalamus controls cold-induced food seeking. Nature 621:138–145

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  58. Fernández-Peña C, Reimúndez A, Viana F, Arce VM, Señarís R (2023) Sex differences in thermoregulation in mammals: implications for energy homeostasis. Front Endocrinol 14:1093376

    Article  Google Scholar 

  59. Greenfield AM, Alba BK, Giersch GEW, Seeley AD (2023) Sex differences in thermal sensitivity and perception: implications for behavioral and autonomic thermoregulation. Physiol Behav 263:114126

    Article  CAS  PubMed  Google Scholar 

  60. Ye H, Feng B, Wang C, Saito K, Yang Y, Ibrahimi L et al (2022) An estrogen-sensitive hypothalamus-midbrain neural circuit controls thermogenesis and physical activity. Sci Adv 8:eabk0185

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  61. Grant AD, Kriegsfeld LJ (2023) Neural substrates underlying rhythmic coupling of female reproductive and thermoregulatory circuits. Front Physiol 14:1254287

    Article  PubMed  PubMed Central  Google Scholar 

  62. Charkoudian N, Stachenfeld N (2016) Sex hormone effects on autonomic mechanisms of thermoregulation in humans. Auton Neuroscience: Basic Clin 196:75–80

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundations of China (81971135; 8217070610; 81801303); Natural Science Foundations of Heilongjiang (YQ2020H014); the “Chunhui Plan” of the Ministry of Education (HLJ2019009); Distinguished Young Foundations of the First Affiliated Hospital of Harbin Medical University (HYD2020JQ0014).

Author information

Authors and Affiliations

Authors

Contributions

GY, YS, LW, and RL designed experiments. RL, HX, CL and QJ performed experiments. YL, GW and RL analyzed data. RL, HX, GY and YS wrote the main manuscript text. All authors have reviewed the manuscript.

Corresponding authors

Correspondence to Lu Wang, Yi Sun or Guang Yang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical Approval

All animal procedures were approved by the Institutional Animal Care and Use Committee of Harbin Medical School, and experiments were performed in accordance to the CPCSEA guidelines for ethical use of animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Xiang, H., Liu, C. et al. Lateral Habenula Neurons Signal Cold Aversion and Participate in Cold Aversion. Neurochem Res 49, 771–784 (2024). https://doi.org/10.1007/s11064-023-04076-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04076-7

Keywords

Navigation