Skip to main content

Advertisement

Log in

The Protective Effect of Lithium Against Rotenone may be Evolutionarily Conserved: Evidence from Eisenia fetida, a Primitive Animal with a Ganglionic Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Chronic exposure to stress is a non-adaptive situation that is associated with mitochondrial dysfunction and the accumulation of reactive oxygen species (ROS), especially superoxide anion (SA). This accumulation of ROS produces damage-associated molecular patterns (DAMPs), which activate chronic inflammatory states and behavioral changes found in several mood disorders. In a previous study, we observed that an imbalance of SA triggered by rotenone (Ro) exposure caused evolutionarily conserved oxi-inflammatory disturbances and behavioral changes in Eisenia fetida earthworms. These results supported our hypothesis that SA imbalance triggered by Ro exposure could be attenuated by lithium carbonate (LC), which has anti-inflammatory properties. The initial protocol exposed earthworms to Ro (30 nM) and four different LC concentrations. LC at a concentration of 12.85 mg/L decreased SA and nitric oxide (NO) levels and was chosen to perform complementary assays: (1) neuromuscular damage evaluated by optical and scanning electron microscopy (SEM), (2) innate immune inefficiency by analysis of Eisenia spp. extracellular neutrophil traps (eNETs), and (3) behavioral changes. Gene expression was also evaluated involving mitochondrial (COII, ND1), inflammatory (EaTLR, AMP), and neuronal transmission (nAchR α5). LC attenuated the high melanized deposits in the circular musculature, fiber disarrangement, destruction of secretory glands, immune inefficiency, and impulsive behavior pattern triggered by Ro exposure. However, the effects of LC and Ro on gene expression were more heterogeneous. In summary, SA imbalance, potentially associated with mitochondrial dysfunction, appears to be an evolutionary component triggering oxidative, inflammatory, and behavioral changes observed in psychiatric disorders that are inhibited by LC exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated regarding this study are available in this manuscript. Data and related evaluations that supported the entire research will be available in the University library (UFSM) of the corresponding author from 2024, respecting the 12 months agreed upon between the institution and the author. Any inquiries related to the data of this study can be requested from the corresponding author with a reasonable explanation.

References

  1. Johnson J, Mercado-Ayon E, Mercado-Ayon Y, Dong YN, Halawani S, Ngaba L, Lynch DV (2021) Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Arch Biochem Biophy 702:108698. https://doi.org/10.1016/j.abb.2020.108698

    Article  CAS  Google Scholar 

  2. Scaini G, Mason BL, Diaz AP, Jha MK, Soares JC, Trivedi MH, Quevedo J (2021) Dysregulation of mitochondrial dynamics, mitophagy and apoptosis in major depressive disorder: does inflammation play a role? Mol Psychiatry 27:1095–1102. https://doi.org/10.1038/s41380-021-01312-w

    Article  PubMed  CAS  Google Scholar 

  3. Madireddy S, Madireddy S (2022) ​​Therapeutic interventions to mitigate mitochondrial dysfunction and oxidative Stress–Induced damage in patients with bipolar disorder. Int J Mol Sci 23(3):1844. https://doi.org/10.3390/ijms23031844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Whitehurst T, Howes O (2022) The role of mitochondria in the pathophysiology of schizophrenia: a critical review of the evidence focusing on mitochondrial complex one. Neurosci Biobehav Rev 132:449–464. https://doi.org/10.1016/j.neubiorev.2021.11.047

    Article  PubMed  CAS  Google Scholar 

  5. Song T, Song X, Zhu C, Patrick R, Skurla M, Santangelo I, Green M, Harper D et al (2021) Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer’s disease: a meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res Rev 72:101503. https://doi.org/10.1016/j.arr.2021.101503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. González-Rodríguez P, Zampese E, Stout KA, Guzman JN, Llijic E, Yang B, Tkatch T, Stavarache M et al (2021) Disruption of mitochondrial complex I induces progressive parkinsonism. Nature 599(7886):650–656. https://doi.org/10.1038/s41586-021-04059-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. De Souza DV, Pappis L, Bandeira TT, Sangoi GG, Fontana T, Rissi VB, Sagrillo MR, Duarte MM et al (2022) Açaí (Euterpe oleracea Mart.) Presents anti-neuroinflammatory capacity in LPS-activated microglia cells. Nutr Neurosci 25(6):1188–1199. https://doi.org/10.1080/1028415X.2020.1842044

    Article  PubMed  Google Scholar 

  8. Ahn EH, Lei K, Kang SS, Wang ZH, Liu X, Hong W, Edgington-Mitchell LE, Jin L et al (2021) Mitochondrial dysfunction triggers the pathogenesis of Parkinson’s disease in neuronal C/EBPβ transgenic mice. Mol Psychiatry 26(12):7838–7850. https://doi.org/10.1038/s41380-021-01284-x

    Article  PubMed  CAS  Google Scholar 

  9. Lin MM, Liu N, Qin ZH, Wang Y (2022) Mitochondrial-derived damage-associated molecular patterns amplify neuroinflammation in neurodegenerative diseases. Acta Pharmacol Sin 43(10):2439–2447. https://doi.org/10.1038/s41401-022-00879-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. da Cruz Jung IE, da Cruz IBM, Barbisan F et al (2020) Superoxide imbalance triggered by Val16Ala-SOD2 polymorphism increases the risk of depression and self-reported psychological stress in free-living elderly people. Mol Genet Genomic Med 8(2):e1080. https://doi.org/10.1002/mgg3.1080

    Article  PubMed  CAS  Google Scholar 

  11. da Cruz Jung IE, Duarte T, da Cruz IBM et al (2020) Val16Ala-SOD2 polymorphism modulates hypothalamic-pituitary-adrenal axis molecules and BDNF levels in healthy adults under no psychological stress. Genet Mol Res 19(2):GMR18586. https://doi.org/10.4238/gmr18586

    Article  CAS  Google Scholar 

  12. Jung IEDC, Assmann CE, Mastella MH, Barbisan F, Ruaro RAS, Roggia I, Turra BO, Chitolina B et al (2021) Superoxide-anion triggers impairments of immune efficiency and stress response behaviors of Eisenia fetida earthworms. Chemosphere 269:128712. https://doi.org/10.1016/j.chemosphere.2020.128712

    Article  CAS  Google Scholar 

  13. Mastella MH, Roggia I, Turra BO, Teixeira CF, Assmann CE, Morais-Pinto L, Vidal T, Melazzo C et al (2022) Superoxide-imbalance Pharmacologically Induced by Rotenone triggers behavioral, neural, and inflammatory alterations in the Eisenia fetida Earthworm. Neuroscience 502:25–40. https://doi.org/10.1016/j.neuroscience.2022.07.035

    Article  PubMed  CAS  Google Scholar 

  14. Denes AS, Jékely G, Steinmetz PR et al (2007) Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in bilateria. Cell 129(2):277–288. https://doi.org/10.1016/j.cell.2007.02.040

    Article  PubMed  CAS  Google Scholar 

  15. Adeel M et al (2021) A critical review of the environmental impacts of manufactured nano-objects on earthworm species. Environmental Pollution. v. 290, n. August, p. 118041. https://doi.org/10.1016/j.envpol.2021.118041

  16. Homa J (2018) Earthworm coelomocyte extracellular traps: structural and functional similarities with neutrophil NETs. Cell Tissue Res 371(3):407–414. https://doi.org/10.1007/s00441-018-2787-0

    Article  PubMed  PubMed Central  Google Scholar 

  17. Radad K, Al-Shraim M, Al-Emam A, Wang F, Kranner B, Rausch WD, Moldzio R (2019) Rotenone: from modelling to implication in Parkinson’s disease. Folia Neuropathol 57(4):317–326. https://doi.org/10.5114/fn.2019.89857

    Article  PubMed  Google Scholar 

  18. Betarbet R, Sherer TB, Mackenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301–1306. https://doi.org/10.1038/81834

    Article  PubMed  CAS  Google Scholar 

  19. Hasan W, Kori RK, Jain J, Yadav RS, Jat D (2019) Neuroprotective effects of mitochondria-targeted curcumin against rotenone-induced oxidative damage in cerebellum of mice. J Biochem Mol Toxicol 34(1):1–8. https://doi.org/10.1002/jbt.22416

    Article  CAS  Google Scholar 

  20. Scola G, Kim HK, Young LT, Salvador M, Andreazza AC (2014) Lithium reduces the effects of rotenone-induced complex I dysfunction on DNA methylation and hydroxymethylation in rat cortical primary neurons. Psychopharmacology 231(21):4189–4198. https://doi.org/10.1007/s00213-014-3565-7

    Article  PubMed  CAS  Google Scholar 

  21. Machado AK, Andreazza AC, da Silva TM et al (2016) Neuroprotective Effects of Açaí (Euterpe oleracea Mart.) against Rotenone In Vitro Exposure. Oxid Med Cell Longev. 2016:8940850. https://doi.org/10.1155/2016/8940850

  22. Ghanaatfar F, Ghanaatfar A, Isapour P, Farokhi N, Bozorgniahosseini S, Javadi M, Gholami M, Ulloa L et al (2022) Is lithium neuroprotective? An updated mechanistic illustrated review. Fundam Clin Pharmacol 2022. https://doi.org/10.1111/fcp.12826

  23. Fernandes MS, Barbisan F, Azzolin VF et al (2019) Lithium is able to minimize olanzapine oxidative-inflammatory induction on macrophage cells. PLoS One. 2019;14(1):e0209223. https://doi.org/10.1371/journal.pone.0209223

  24. Wen J, Sawmiller D, Wheeldon B, Tan J (2019) A review for Lithium: Pharmacokinetics, Drug Design, and toxicity. CNS Neurol Disord Drug Targets 18(10):769–778. https://doi.org/10.2174/1871527318666191114095249

    Article  PubMed  CAS  Google Scholar 

  25. Ochoa ELM (2022) Lithium as a neuroprotective Agent for bipolar disorder: an overview. Cell Mol Neurobiol 42(1):85–97. https://doi.org/10.1007/s10571-021-01129-9

    Article  PubMed  CAS  Google Scholar 

  26. Rana AK, Sharma S, Patial V, Singh D (2022) Lithium therapy subdues neuroinflammation to maintain pyramidal cells arborization and rescues neurobehavioural impairments in ovariectomized rats. Mol Neurobiol 59(3):1706–1723. https://doi.org/10.1007/s12035-021-02719-w

    Article  PubMed  CAS  Google Scholar 

  27. Hong N, Park JS, Kim HJ (2021) Synapto-protective effect of lithium on HIV-1 Tat-induced synapse loss in rat hippocampal cultures. Anim Cells Syst (Seoul) 26(1):1–9. https://doi.org/10.1080/19768354.2021.2018044

    Article  PubMed  CAS  Google Scholar 

  28. Zhao Q, Liu H, Cheng J, Zhu Y, Xiao Q, Bai Y, Tao J et al (2019) Neuroprotective effects of lithium on a chronic MPTP mouse model of Parkinson’s disease via regulation of α-synuclein methylation. Mol Med Rep 19(6):4989–4997. https://doi.org/10.3892/mmr.2019.10152

    Article  PubMed  CAS  Google Scholar 

  29. Ji YB, Gao Q, Tan XX, Huang XW, Ma YZ, Fang C, Wang SN, Qiu LH et al (2021) Lithium alleviates blood-brain barrier breakdown after cerebral ischemia and reperfusion by upregulating endothelial Wnt/β-catenin signaling in mice. Neuropharmacology 186:108474. https://doi.org/10.1016/j.neuropharm.2021.108474

    Article  PubMed  CAS  Google Scholar 

  30. Haupt M, Bähr M, Doeppner TR (2021) Lithium beyond psychiatric indications: the reincarnation of a new old drug. Neural Regen Res 16(12):2383–2387. https://doi.org/10.4103/1673-5374.313015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Nakamura S (2022) Integrated pathophysiology of schizophrenia, major depression, and bipolar disorder as monoamine axon disorder. Front Biosci 14(1):4. https://doi.org/10.31083/j.fbs1401004

    Article  CAS  Google Scholar 

  32. Mohamad KNS, Safuan S, Shamsuddin S, Foroozandeh P (2020) Aging of the cells: insight into cellular senescence and detection methods. Eur J Cell Biol 99(6):151108. https://doi.org/10.1016/j.ejcb.2020.151108

    Article  CAS  Google Scholar 

  33. Valieva Y, Ivanova E, Fayzullin A, Kurkov A, Igrunkova A (2022) Senescence-Associated β-Galactosidase detection in Pathology. Diagnostics (Basel) 12(10):2309 Published 2022 Sep 25. https://doi.org/10.3390/diagnostics12102309

    Article  PubMed  CAS  Google Scholar 

  34. Hønsi TG, Stenersen J (2000) Activity and localisation of the lysosomal marker enzymes acid phosphatase, N-acetyl-beta-D-glucosaminidase, and beta-galactosidase in the earthworms Eisenia fetida and E. veneta. Comp Biochem Physiol B Biochem Mol Biol 125(3):429–437. https://doi.org/10.1016/s0305-0491(99)00181-9

    Article  PubMed  Google Scholar 

  35. Tufekci KU, Alural B, Tarakcioglu E, San T, Genc S (2021) Lithium inhibits oxidative stress-induced neuronal senescence through miR-34a. Mol Biol Rep 48(5):4171–4180. https://doi.org/10.1007/s11033-021-06430-w

    Article  PubMed  CAS  Google Scholar 

  36. Zhu M, Min S, Mao X et al (2022) Interleukin-13 promotes cellular senescence through inducing mitochondrial dysfunction in IgG4-related sialadenitis. Int J Oral Sci 14(1):29 Published 2022 Jun 20. https://doi.org/10.1038/s41368-022-00180-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. European Parliament and the Council of the European Union (2010) Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals used for Scientific Purposes OJ L276/33. Off. J. Eur. Union 276. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:En:PDF. Accessed 28 May 2022

  38. International Organization for Standardization (2008): ISO 17512-1:2008: Soil quality — Avoidance test for determining the quality of soils and effects of chemicals on behaviour — Part 1: Test with earthworms (Eisenia fetida and Eisenia andrei)https://www.iso.org/standard/38402.html. Accessed 27 June 2022

  39. Fountoulakis KN, Tohen M, Zarate CA Jr (2022) Lithium treatment of bipolar disorder in adults: a systematic review of randomized trials and meta-analyses. Eur Neuropsychopharmacol 54:100–115. https://doi.org/10.1016/j.euroneuro.2021.10.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Alves AO, Weis GCC, Unfer TC, Assmann CE, Barbisan F, Azzolin VF, Chitolina B, Duarte T et al (2019) Caffeinated beverages contribute to a more efficient inflammatory response: evidence from human and earthworm immune cells. Food Chem Toxicol 134:110809. https://doi.org/10.1016/j.fct.2019.110809

    Article  PubMed  CAS  Google Scholar 

  41. Choi WS, Shin PG, Lee JH, Kim GD (2012) The regulatory effect of veratric acid on NO production in LPSstimulated RAW264.7 macrophage cells. Cell Immunol 280(2):164–170. https://doi.org/10.1016/j.cellimm.2012.12.007

    Article  PubMed  CAS  Google Scholar 

  42. Morabito G, Trombetta D, Brajendra SK, Ashok PK, Virinder PS, Naccari C, Mancari F, Saija A et al (2010) Antioxidant properties of 4-methylcoumarins in in vitro cell-free systems. Biochimie 92(9):1101–1107. https://doi.org/10.1016/j.biochi.2010.04.017

    Article  PubMed  CAS  Google Scholar 

  43. Reppeto G, Del Peso A, Zurita J (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3:1125–1131, 2008. https://doi.org/10.1038/nprot.2008.75

  44. Lourenço J, Silva A, Carvalho F et al (2011) Histopathological changes in the earthworm Eisenia andrei associated with the exposure to metals and radionuclides. Chemosphere 85(10):1630–1634. https://doi.org/10.1016/j.chemosphere.2011.08.027

    Article  PubMed  CAS  Google Scholar 

  45. Licata A, Ainis L, Martella S et al (2002) Immunohistochemical localization of nNOS in the skin and nerve fibers of the earthworm Lumbricus terrestris L (Annelida Oligochaeta). Acta Histochem 104(3):289–295. https://doi.org/10.1078/0065-1281-00650

    Article  PubMed  Google Scholar 

  46. Royuela M, Fraile B, García-Anchuelo R, Paniagua R (1995) Ultrastructurally different muscle cell types in Eisenia foetida. Oligochaeta) J Morphol 224(1):87–96. https://doi.org/10.1002/jmor.1052240110. Annelida

    Article  PubMed  Google Scholar 

  47. Csoknya M, Takács B, Koza A et al (2005) Neurochemical characterization of nervous elements innervating the body wall of earthworms (Lumbricus, Eisenia): immunohistochemical and pharmacological studies. Cell Tissue Res 321(3):479–490. https://doi.org/10.1007/s00441-005-1134-4

    Article  PubMed  CAS  Google Scholar 

  48. Valembois P, Lassègues M, Roch P (1992) Formation of brown bodies in the coelomic cavity of the earthworm Eisenia fetida andrei and attendant changes in shape and adhesive capacity of constitutive cells. Dev Comp Immunol. 1992;16(2–3):95–101. https://doi.org/10.1016/0145-305x(92)90010-a

  49. Bilej M, Procházková P, Silerová M, Josková R (2010) Earthworm immunity. Adv Exp Med Biol 708:66–79. https://doi.org/10.1007/978-1-4419-8059-5_4

    Article  PubMed  CAS  Google Scholar 

  50. Song C, Li H, Mao Z et al (2022) Delayed neutrophil apoptosis may enhance NET formation in ARDS. Respir Res. 2022;23(1):155. https://doi.org/10.1186/s12931-022-02065-y

  51. Candello FP, Guimarães JR, Nour EAA (2018) Earthworm avoidance behavior to antimicrobial sulfadiazine on tropical artificial soil. Ecotoxicol Environ Contam 13(2):69–75. https://doi.org/10.5132/eec.2018.02.09

    Article  Google Scholar 

  52. Felin FD, Maia-Ribeiro EA, Felin CD, Bonotto NAC, Turra BO, Roggia I, Azzolin VF, Teixeira CF et al (2022) Amazonian Guarana- and Açai-Conjugated extracts improve scratched Fibroblast Healing and Eisenia fetida Surgical tail amputation by modulating oxidative metabolism. Oxid Med Cell Longev 2022:1–16. https://doi.org/10.1155/2022/3094362

    Article  CAS  Google Scholar 

  53. Mo X, Qiao Y, Sun Z, Sun X, Li Y (2012) Molecular toxicity of earthworms induced by cadmium contaminated soil and biomarkers screening. J Environ Sci 24:1504–1510. https://doi.org/10.1016/s1001-0742(11)60957-1

    Article  CAS  Google Scholar 

  54. Zhou S, Wang Z, Klaunig JE (2013) Caenorhabditis elegans neuron degeneration and mitochondrial suppression caused by selected environmental chemicals. Int J Biochem Mol Biol 15(4):191–200

    Google Scholar 

  55. Subaraja M, Vanisree AJ (2019) Aberrant neurotransmissional mRNAs in cerebral ganglions of rotenone-exposed Lumbricus terrestris exhibiting motor dysfunction and altered cognitive behavior. Environ Sci Pollut Res Int 26:14461–14472. https://doi.org/10.1007/s11356-019-04740-y

    Article  PubMed  CAS  Google Scholar 

  56. Murai M, Ishihara A, Nishioka T, Yagi T, Miyoshi H (2007) The ND1 subunit constructs the inhibitor binding domain in bovine heart mitochondrial complex I. Biochemistry 46(21):6409–6416. https://doi.org/10.1021/bi7003697

    Article  PubMed  CAS  Google Scholar 

  57. Škanta F, Roubalová R, Dvořák J, Procházhová P, Bilej M (2013) Molecular cloning and expression of TLR in the Eisenia andrei earthworm. Dev Comp Immunol 41(4):694–702. https://doi.org/10.1016/j.dci.2013.08.009

    Article  PubMed  CAS  Google Scholar 

  58. OECD Guidelines for the Testing of Chemicals, Sect. 2: Effects on Biotic Systems (1984) Test No. 207: Earthworm, Acute Toxicity Tests. https://doi.org/10.1787/9789264070042-en. Accessed 27 June 2022

  59. Damri O, Natour S, Asslih S, Agam G (2023) Does treatment with autophagy-enhancers and/or ROS-scavengers alleviate behavioral and neurochemical consequences of low-dose rotenone-induced mild mitochondrial dysfunction in mice? [published online ahead of print, 2023 Jan 23]. Mol Psychiatry. https://doi.org/10.1038/s41380-023-01955-x

    Article  PubMed  PubMed Central  Google Scholar 

  60. Teixeira CF, Da Cruz IBM, Ribeiro EE, Pillar DM, Turra BO, Praia RS, Barbisan F, Alves AO et al (2021) Safety indicators of a novel multi supplement based on guarana, selenium, and L-carnitine: evidence from human and red earthworm immune cells. Food Chem Toxicol 150:112066. https://doi.org/10.1016/j.fct.2021.112066

    Article  PubMed  CAS  Google Scholar 

  61. Calabrese V, Cornelius C, Trovato A et al (2010) The hormetic role of dietary antioxidants in free radical-related diseases. Curr Pharm Des 16(7):877–883. https://doi.org/10.2174/138161210790883615

    Article  PubMed  CAS  Google Scholar 

  62. Calabrese EJ, Pressman P, Hayes AW et al (2023) Lithium and hormesis: enhancement of adaptive responses and biological performance via hormetic mechanisms [published online ahead of print, 2023 Mar 17]. J Trace Elem Med Biol 78:127156. https://doi.org/10.1016/j.jtemb.2023.127156

    Article  PubMed  CAS  Google Scholar 

  63. Ostadhadi S, Norouzi-Javidan A, Nikoui V, Zolfaghari S, Moradi A, Dehpour AR (2018) Nitric oxide involvement in additive antidepressant-like effect of agmatine and lithium in mice forced swim test. Psychiatry Res 266:262–268. https://doi.org/10.1016/j.psychres.2018.03.010

    Article  PubMed  CAS  Google Scholar 

  64. Barbisan F, Azzolin VF, Monteiro GC, Teixeira CF, Mastella MH, Bueno V, Duarte MMMF, Wagner G et al (2018) Genetic or pharmacological superoxide-hydrogen peroxide imbalances modulate the in vitro effects of lithium on glycogen synthase kinase-3β. Gene 655:48–55. https://doi.org/10.1016/j.gene.2018.02.046

    Article  PubMed  CAS  Google Scholar 

  65. Soriano-Torres O, Noa Romero E, González Sosa NL, Puertas JME, Quintero AF, Monteto MG, Alfonso DM, Hernández YI et al (2022) Lithium salts as a treatment for COVID-19: pre-clinical outcomes. Biomed Pharmacother 149:112872. https://doi.org/10.1016/j.biopha.2022.112872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Costa AJ, Erustes AG, Sinigaglia R, Girardi CRN, Pereira GJS, Ureshino RP, Smailli SS (2021) Lack of Autophagy induction by Lithium decreases neuroprotective Effects in the striatum of aged rats. Pharmaceutics 13(2):135. https://doi.org/10.3390/pharmaceutics13020135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Hamano T, Enomoto S, Shirafuji N, Ikawa M, Yamamura O, Yen SH, Nakamoto Y (2021) Autophagy and tau protein. Int J Mol Sci 22(14):7475. https://doi.org/10.3390/ijms22147475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Gowri S, Thangaraj R (2020) Studies on the toxic effects of agrochemical pesticide (Monocrotophos) on physiological and reproductive behavior of indigenous and exotic earthworm species. Int J Environ Health Res 30(2):212–225. https://doi.org/10.1080/09603123.2019.1590538

    Article  PubMed  CAS  Google Scholar 

  69. Ozkan-Aydin Y, Liu B, Ferrero AC, Seidel M, Hammond FL 3rd, Goldman DI (2021) Lateral bending and buckling aids biological and robotic earthworm anchoring and locomotion. Bioinspir Biomim 17(1):016001. https://doi.org/10.1088/1748-3190/ac24bf

    Article  Google Scholar 

  70. Fernandez L, Komatsu DE, Gurevich M, Hurst LC (2018) Emerging strategies on adjuvant therapies for nerve recovery. J Hand Surg Am 43(4):368–373. https://doi.org/10.1016/j.jhsa.2018.01.023

    Article  PubMed  Google Scholar 

  71. Lee JH, Kim SW, Kim JH, Kim HJ, Um J, Jung DW, Williams DR (2021) Lithium chloride protects against Sepsis-Induced skeletal muscle atrophy and Cancer Cachexia. Cells 10(5):1017. https://doi.org/10.3390/cells10051017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Eseigbe FJ, Doherty VF, Sogbanmu TO, Otitoloju AA (2013) Histopathology alterations and lipid peroxidation as biomarkers of hydrocarbon-induced stress in earthworm, Eudrilus eugeniae. Environ Monit Assess 185(3):218902196. https://doi.org/10.1007/s10661-012-2700-3

    Article  CAS  Google Scholar 

  73. Ijomah OO, Adesuyi AA, Njoku KL, Ojokuku SA, Moses UD, Adesuyi OO (2020) Histopathological effects and biomarker response of earthworms, Eisenia fetida, after exposure to crude oil contaminated soils. Environ Anal Health Toxicol 35(4):e2020021–e2020020. https://doi.org/10.5620/eaht.2020021

    Article  PubMed  PubMed Central  Google Scholar 

  74. Izumi R, Azuma K, Izawa H, Morimoto M, Nagashima M, Osaki T, Tsuka T, Imagawa T et al (2016) Chitin nanofibrils suppress skin inflammation in atopic dermatitis-like skin lesions in NC/Nga mice. Carbohydr Polym 146:320–327. https://doi.org/10.1016/j.carbpol.2016.03.068

    Article  PubMed  CAS  Google Scholar 

  75. Dall’Oglio F, Nasca MR, Gerbino C, Micali G (2022) An overview of the diagnosis and management of Seborrheic Dermatitis. Clin Cosmet Investig Dermatol 15:1537–1548. https://doi.org/10.2147/CCID.S284671

    Article  PubMed  PubMed Central  Google Scholar 

  76. Fu R, Tang Y, Ling ZM, Cheng X, Song FH, Zhou LH, Wu W (2014) Lithium enhances survival and regrowth of spinal motoneurons after ventral root avulsion. BMC Neurosci 15:84. https://doi.org/10.1186/1471-2202-15-84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Whitley KC, Hamstra SI, Baranowski RW, Watson CJF, MacPherson REK, MacNeil AJ, Roy BD, Vandenboom R et al (2020) GSK3 inhibition with low dose lithium supplementation augments murine muscle fatigue resistance and specific force production. Physiol Rep 8(14):e14517. https://doi.org/10.14814/phy2.14517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Biagioni F, Ferrucci M, Ryskalin L, Fulceri F, Lazzeri G, Calierno MT, Busceti CL, Roffoli R et al (2017) Protective effects of long-term lithium administration in a slowly progressive SMA mouse model. Arch Ital Biol 155(4):118–130. https://doi.org/10.12871/00039829201749

    Article  PubMed  Google Scholar 

  79. Souza DN, Mendes FM, Nogueira FN, Simões A, Nicolau J (2016) Lithium induces glycogen Accumulation in Salivary Glands of the rat. Biol Trace Elem Res 169(2):271–278. https://doi.org/10.1007/s12011-015-0434-0

    Article  PubMed  CAS  Google Scholar 

  80. Rivera BH, Rodríguez MG, Rodríguez-Heredia M, Rodríguez-Heredia B, Barois I, González Segovia R (2020) Characterisation by Excitation-Emission Matrix fluorescence spectroscopy of pigments in mucus secreted of Earthworm Eisenia foetida exposed to lead. J Fluoresc 30(3):725–733. https://doi.org/10.1007/s10895-020-02533-y

    Article  CAS  Google Scholar 

  81. Pereira PCG, Soares LOS, Júnior SFS, Saggioro EM, Correia FV (2020) Sub-lethal effects of the pesticide imazalil on the earthworm Eisenia andrei: reproduction, cytotoxicity, and oxidative stress. Environ Sci Pollut Res Int 27(27):33474–33485. https://doi.org/10.1007/s11356-019-05440-3

    Article  PubMed  CAS  Google Scholar 

  82. Zhu Z, Xing H, Tang R, Qian S, He S, Hu Q, Zhang HN (2021) The preconditioning of lithium promotes mesenchymal stem cell-based therapy for the degenerated intervertebral disc via upregulating cellular ROS. Stem Cell Res Ther 12(1):239. https://doi.org/10.1186/s13287-021-02306-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Zhang J, He L, Yang Z, Li L, Cai W (2018) Lithium chloride promotes proliferation of neural stem cells in vitro, possibly by triggering the wnt signaling pathway. Anim Cells Syst (Seoul) 23(1):32–41. https://doi.org/10.1080/19768354.2018.1487334

    Article  PubMed  CAS  Google Scholar 

  84. Gu XK, Li XR, Lu ML, Xu H (2020) Lithium promotes proliferation and suppresses migration of Schwann cells. Neural Regen Res 15(10):1955–1961. https://doi.org/10.4103/1673-5374.280324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Kazemi H, Noori-Zadeh A, Darabi S, Rajaei F (2018) Lithium prevents cell apoptosis through autophagy induction. Bratisl Lek Listy 119(4):234–239. https://doi.org/10.4149/BLL_2018_044

    Article  PubMed  CAS  Google Scholar 

  86. Bodó K, Ernszt D, Németh P, Engelmann P (2018) Distinct immune-and defense-related molecular fingerprints in sepatated coelomocyte subsets of Eisenia andrei earthworms. Invertebr Surviv J 15(1):338–345. https://doi.org/10.25431/1824-307X/isj.v15i1.338-345

    Article  Google Scholar 

  87. Corsi-Zuelli F, Schneider AH, Santos-Silva T et al (2022) Increased blood neutrophil extracellular traps (NETs) associated with early life stress: translational findings in recent-onset schizophrenia and rodent model. Transl Psychiatry. 2022;12(1):526. https://doi.org/10.1038/s41398-022-02291-4

  88. Vallée A, Vallée JN, Lecarpentier Y (2021) Parkinson’s Disease: potential actions of Lithium by targeting the WNT/β-Catenin pathway, oxidative stress, inflammation and glutamatergic pathway. Cells 10(2):230. https://doi.org/10.3390/cells10020230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Kim Y, Vadodaria KC, Lenkei Z et al (2019) Mitochondria, Metabolism, and Redox Mechanisms in Psychiatric Disorders. Antioxid Redox Signal. 2019;31(4):275–317. https://doi.org/10.1089/ars.2018.7606

  90. Imani E, Harati A, Pourreza H, Goudarzi MM (2021) Brain-behavior relationships in the perceptual decision-making process through cognitive processing stages. Neuropsychologia 155:107821. https://doi.org/10.1016/j.neuropsychologia.2021.107821

    Article  PubMed  Google Scholar 

  91. Connors BL, Rende R (2018) Embodied decision-making style: below and beyond cognition. Front Psychol 9:1123. https://doi.org/10.3389/fpsyg.2018.01123

    Article  PubMed  PubMed Central  Google Scholar 

  92. Watzek J, Hauber ME, Jack KM, Murrell JR, Tecot SR, Brosnan SF (2021) Modelling collective decision-making: Insights into collective anti-predator behaviors from an agent-based approach. Behav Processes 193:104530. https://doi.org/10.1016/j.beproc.2021.104530

  93. Adams WK, Levesque DL, Cocker PJ, Kaur S, Bodnar TS, Young AH, Winstanley CA (2020) Decreased motor impulsivity following chronic lithium treatment in male rats is associated with reduced levels of pro-inflammatory cytokines in the orbitofrontal cortex. Brain Behav Immun 89:339–349. https://doi.org/10.1016/j.bbi.2020.07.018

    Article  PubMed  CAS  Google Scholar 

  94. Kurauchi Y, Yoshimaru Y, Kajiwara Y, Yamada T, Matsuda K, Hisatsune A, Seki T, Katsuki H (2019) Na+, K+-ATPase inhibition causes hyperactivity and impulsivity in mice via dopamine D2 receptor-mediated mechanism. Neurosci Res 146:54–64. https://doi.org/10.1016/j.neures.2018.10.001

    Article  PubMed  CAS  Google Scholar 

  95. Sun Z, Xue L, Li Y, Cui G, Sun R, Hu M, Zhong G (2021) Rotenone-induced necrosis in insect cells via the cytoplasmic membrane damage and mitochondrial dysfunction. Pestic Biochem Physiol 173:104801. https://doi.org/10.1016/j.pestbp.2021.104801

    Article  PubMed  CAS  Google Scholar 

  96. Tondo L, Vázquez GH, Baldessarini RJ (2021) Prevention of suicidal behavior in bipolar disorder. Bipolar Disord 23(1):14–23. https://doi.org/10.1111/bdi.13017

    Article  PubMed  Google Scholar 

  97. Phan DH, Shin EJ, Jeong JH, Tran HQ, Sharma N, Nguyen BT, Jung TW, Nah SY et al (2020) Lithium attenuates d-amphetamine-induced hyperlocomotor activity in mice via inhibition of interaction between cyclooxygenase-2 and indoleamine-2,3-dioxygenase. Clin Exp Pharmacol Physiol 47(5):790–797. https://doi.org/10.1111/1440-1681.13243

    Article  PubMed  CAS  Google Scholar 

  98. Stacey D, Schubert KO, Clark SR, Amare AT, Milanesi E, Maj C, Leckband SG, Shekhtman T et al (2018) A gene co-expression module implicating the mitochondrial electron transport chain is associated with long-term response to lithium treatment in bipolar affective disorder. Transl Psychiatry 8(1):183. https://doi.org/10.1038/s41398-018-0237-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Dong H, Zhang X, Dai X, Lu S, Gui B, Jin W, Zhang S, Zhang S et al (2014) Lithium ameliorates lipopolysaccharide-induced microglial activation via inhibition of toll-like receptor 4 expression by activating the PI3K/Akt/FoxO1 pathway. J Neuroinflammation 11:140. https://doi.org/10.1186/s12974-014-0140-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Li N, Zhang X, Dong H, Zhang S, Sun J, Qian Y (2016) Lithium ameliorates LPS-Induced astrocytes activation partly via inhibition of toll-like receptor 4 expression. Cell Physiol Biochem 38(2):714–725. https://doi.org/10.1159/000443028

    Article  PubMed  CAS  Google Scholar 

  101. Khan MS, Ali T, Abid MN, Jo MH, Khan A, Kim MW, Yoon GH, Cheon EW et al (2017) Lithium ameliorates lipopolysaccharide-induced neurotoxicity in the cortex and hippocampus of the adult rat brain. Neurochem Int 108:343–354. https://doi.org/10.1016/j.neuint.2017.05.008

    Article  PubMed  CAS  Google Scholar 

  102. Engelmann P, Cooper EL, Németh P (2005) Anticipating innate immunity without a toll. Mol Immunol 42(8):931–942. https://doi.org/10.1016/j.molimm.2004.09.038

    Article  PubMed  CAS  Google Scholar 

  103. Kalkman HO, Feuerbach D (2016) Modulatory effects of α7 nAChRs on the immune system and its relevance for CNS disorders. Cell Mol Life Sci 73(13):2511–2530. https://doi.org/10.1007/s00018-016-2175-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Xiang J, Ran LY, Zeng XX, He WW, Xu Y, Cao K, Dong YT, Qi XL et al (2021) LiCl attenuates impaired learning and memory of APP/PS1 mice, which in mechanism involves α7 nAChRs and Wnt/β-catenin pathway. J Cell Mol Med 25(22):10698–10710. https://doi.org/10.1111/jcmm.17006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP (2010) Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 13(11):1763–1811. https://doi.org/10.1089/ars.2009.3074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Calabrese V, Cornelius C, Cuzzocrea S, Iavicoli I, Rizzarelli E, Calabrese EJ (2011) Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Mol Aspects Med 32(4–6):279–304. https://doi.org/10.1016/j.mam.2011.10.007

    Article  PubMed  CAS  Google Scholar 

  107. Calabrese V, Cornelius C, Dinkova-Kostova AT et al (2012) Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta 1822(5):753–783. https://doi.org/10.1016/j.bbadis.2011.11.002

    Article  PubMed  CAS  Google Scholar 

  108. Csoknya M, Takács B, Koza A et al (2005) Neurochemical characterization of nervous elements innervating the body wall of earthworms (Lumbricus, Eisenia): immunohistochemical and pharmacological studies. Cell Tissue Res. 2005;321(3):479–490. https://doi.org/10.1007/s00441-005-1134-4

  109. Shi Z, Tang Z, Wang C (2017) A brief review and evaluation of earthworm biomarkers in soil pollution assessment. Environ Sci Pollut Res Int. 2017;24(15):13284–13294. https://doi.org/10.1007/s11356-017-8784-0

  110. Pereira JL, Antunes SC, Ferreira AC, Goncalves F, Pereira R (2010) Avoidance behavior of earthworms under exposure to pesticides: is it always chemosensorial? J Environ Sci Health B. 2010;45(3):229–232. https://doi.org/10.1080/03601231003613625

Download references

Acknowledgements

The authors are thankful to the funding sources Conselho Nacional de Desenvolvimento Científico (CNPq), Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes). They also express gratitude to laboratory technician Marina de Souza Vencato and the members of the laboratory of the Technology Center, Graduate Program in Mechanical Engineering at UFSM, Juliana Silva and Professor Natália Daudt.

Funding

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), which was received by the author M.H.M., and by the Conselho Nacional de Desenvolvimento Científico (CNPq) and Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS), which were received by the author I.B.M.C.

Author information

Authors and Affiliations

Authors

Contributions

Authors M.H.M. and I.B.M.C. contributed to the study conception and design, material preparation, data collection, analysis, the first draft of the manuscript, and funding acquisition. Author I.R. contributed to conceptualization, supervision, data collection, and the writing/review process. Authors B.O.T., N.C.A.B., C.F.T., D.L.F.P., G.M.M., V.F.A., L.M.P., and F.B. contributed to the material preparation and analysis. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Moisés Henrique Mastella.

Ethics declarations

Ethics approval and consent to participate

According to Brazilian legislation, which governs the study’s location, the use of invertebrates, including those used in this study, does not require approval from an ethics committee. Nevertheless, all experiments were conducted following the guidelines for animal experimentation established by the European Parliament and the Council of the European Union in 2010.

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastella, M.H., Roggia, I., Turra, B.O. et al. The Protective Effect of Lithium Against Rotenone may be Evolutionarily Conserved: Evidence from Eisenia fetida, a Primitive Animal with a Ganglionic Brain. Neurochem Res 48, 3538–3559 (2023). https://doi.org/10.1007/s11064-023-04001-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04001-y

Keywords

Navigation