Skip to main content

Advertisement

Log in

Glycogen Synthase Kinase-3 Inhibitors Block Morphine-Induced Locomotor Activation, Straub Tail, and Depression of Rearing in Mice Via a Possible Central Action

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We investigated morphine-induced Straub’s tail reaction (STR) in mice pretreated with or without glycogen synthase kinase-3 (GSK-3) inhibitors (SB216763 and AR-A014418) by using a newly modified, infrared beam sensor-based automated apparatus. Mice treated with a single injection of morphine (30 mg/kg, i.p.) showed a significant STR with a plateau level at a time point of 20 min after morphine challenge. Pretreatment of mice with SB216763 (5 mg/kg, s.c.) or AR-A014418 (3 mg/kg, i.p.) significantly inhibited morphine-induced STR and attenuated the duration of STR in a dose-dependent fashion. In the striatum and the nucleus accumbens, expression of pGSK-3βTyr216 but not GSK3β or pGSK-3βSer9 was largely but not significantly reduced after treatment with SB216763 (5 mg/kg, s.c.) in combination with/without morphine, indicating that the inhibitory effect of GSK-3 inhibitors on morphine-induced STR and hyperlocomotion might not depend on the direct blockade of GSK-3β function. In constipated mice after morphine challenge (30 mg/kg), the effect of GSK-3 inhibitors on gastrointestinal transit was examined to reveal whether the action of GSK-3 inhibitors on morphine effects was central and/or peripheral. Pretreatment with SB216763 (5 mg/kg) did not block constipation in morphine-injected mice. The mechanism of action seems to be central but not peripheral, although the underlying subcellular mechanism of GSK-3 inhibitors is not clear. Our measurement system is a useful tool for investigating the excitatory effects of morphine in experimental animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study that support the findings of this study are available from the corresponding author, Junichi Kitanaka, upon reasonable request.

References

  1. Botz-Zapp CA, Foster SL, Pulley DM, Hempel B, Bi GH, Xi ZX, Newman AH, Weinshenker D, Manvich DF (2021) Effects of the selective dopamine D(3) receptor antagonist PG01037 on morphine-induced hyperactivity and antinociception in mice. Behav Brain Res 415:113506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Varshneya NB, Walentiny DM, Moisa LT, Walker TD, Akinfiresoye LR, Beardsley PM (2021) Fentanyl-related substances elicit antinociception and hyperlocomotion in mice via opioid receptors. Pharmacol Biochem Behav 208:173242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vashchinkina E, Piippo O, Vekovischeva O, Krupitsky E, Ilyuk R, Neznanov N, Kazankov K, Zaplatkin I, Korpi ER (2018) Addiction-related interactions of pregabalin with morphine in mice and humans: reinforcing and inhibiting effects. Addict Biol 23:945–958

    Article  CAS  PubMed  Google Scholar 

  4. Kitanaka N, Kitanaka J, Hall FS, Kandori T, Murakami A, Muratani K, Nakano T, Uhl GR, Takemura M (2018) Tetrabenazine, a vesicular monoamine transporter-2 inhibitor, attenuates morphine-induced hyperlocomotion in mice through alteration of dopamine and 5-hydroxytryptamine turnover in the cerebral cortex. Pharmacol Biochem Behav 172:9–16

    Article  CAS  PubMed  Google Scholar 

  5. Straub W (1911) Eine empfindliche biologische Reaktion auf Morphin. Deutsche Med Wochenschr 37:1462–1468

    Google Scholar 

  6. Aceto MD, McKean DB, Pearl J (1969) Effects of opiates and opiate antagonists on the Straub tail reaction in mice. Br J Pharmacol 36:225–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zarrindast MR, Alaei-Nia K, Shafizadeh M (2001) On the mechanism of tolerance to morphine-induced Straub tail reaction in mice. Pharmacol Biochem Behav 69:419–424

    Article  CAS  PubMed  Google Scholar 

  8. Nath C, Gupta MB, Patnaik GK, Dhawan KN (1994) Morphine-induced straub tail response: mediated by central mu2-opioid receptor. Eur J Pharmacol 263:203–205

    Article  CAS  PubMed  Google Scholar 

  9. Jansen van't Land C, Hendriksen CF (1995) Change in locomotor activity pattern in mice: a model for recognition of distress? Lab Anim 29:286–293

  10. Miyazaki Y, Kobayashi K, Matsushita S, Shimizu N, Murata T (2022) An assessment of the spontaneous locomotor activity of BALB/c mice. J Pharmacol Sci 149:46–52

    Article  CAS  PubMed  Google Scholar 

  11. Kitanaka J, Kitanaka N, Hall FS, Uhl GR, Tanaka K, Nishiyama N, Takemura M (2012) Straub tail reaction in mice treated with σ(1) receptor antagonist in combination with methamphetamine. Brain Res 1482:40–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Narita M, Suzuki T, Misawa M, Nagase H (1993) Antagonism of the morphine-induced Straub tail reaction by kappa-opioid receptor activation in mice. Psychopharmacology 110:254–256

    Article  CAS  PubMed  Google Scholar 

  13. Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12:483–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Embi N, Rylatt DB, Cohen P (1980) Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem 107:519–527

    Article  CAS  PubMed  Google Scholar 

  15. Shin K, Kim KH, Yoon MS, Suh DS, Lee JY, Kim A, Eo W (2016) Expression of interactive genes associated with apoptosis and their prognostic value for ovarian serous adenocarcinoma. Adv Clin Exp Med 25:513–521

    Article  PubMed  Google Scholar 

  16. Beurel E, Grieco SF, Jope RS (2015) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 148:114–131

    Article  CAS  PubMed  Google Scholar 

  17. Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104:1433–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jaworski T, Banach-Kasper E, Gralec K (2019) GSK-3β at the intersection of neuronal plasticity and neurodegeneration. Neural Plast 2019:4209475

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kaladchibachi SA, Doble B, Anthopoulos N, Woodgett JR, Manoukian AS (2007) Glycogen synthase kinase 3, circadian rhythms, and bipolar disorder: a molecular link in the therapeutic action of lithium. J Circadian Rhythms 5:3

    Article  PubMed  PubMed Central  Google Scholar 

  20. Manoukian AS, Woodgett JR (2002) Role of glycogen synthase kinase-3 in cancer: regulation by Wnts and other signaling pathways. Adv Cancer Res 84:203–229

    Article  CAS  PubMed  Google Scholar 

  21. Gandy JC, Melendez-Ferro M, Bijur GN, Van Leuven F, Roche JK, Lechat B, Devijver H, Demedts D, Perez-Costas E, Roberts RC (2013) Glycogen synthase kinase-3β (GSK3β) expression in a mouse model of Alzheimer’s disease: a light and electron microscopy study. Synapse 67:313–327

    Article  CAS  PubMed  Google Scholar 

  22. Pandey GN, Dwivedi Y, Rizavi HS, Teppen T, Gaszner GL, Roberts RC, Conley RR (2009) GSK-3beta gene expression in human postmortem brain: regional distribution, effects of age and suicide. Neurochem Res 34:274–285

    Article  CAS  PubMed  Google Scholar 

  23. Takahashi M, Tomizawa K, Kato R, Sato K, Uchida T, Fujita SC, Imahori K (1994) Localization and developmental changes of tau protein kinase I/glycogen synthase kinase-3 beta in rat brain. J Neurochem 63:245–255

    Article  CAS  PubMed  Google Scholar 

  24. Leroy K, Brion JP (1999) Developmental expression and localization of glycogen synthase kinase-3beta in rat brain. J Chem Neuroanat 16:279–293

    Article  CAS  PubMed  Google Scholar 

  25. Pei JJ, Tanaka T, Tung YC, Braak E, Iqbal K, Grundke-Iqbal I (1997) Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J Neuropathol Exp Neurol 56:70–78

    Article  CAS  PubMed  Google Scholar 

  26. Hur EM, Zhou FQ (2010) GSK3 signalling in neural development. Nat Rev Neurosci 11:539–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Y, Zhu C, Sun B, Lv J, Liu Z, Liu S, Li H (2017) Integrated high throughput analysis identifies GSK3 as a crucial determinant of p53-mediated apoptosis in lung cancer cells. Cell Physiol Biochem 42:1177–1191

    Article  CAS  PubMed  Google Scholar 

  28. Ucha M, Coria SM, Núñez AE, Santos-Toscano R, Roura-Martínez D, Fernández-Ruiz J, Higuera-Matas A, Ambrosio E (2019) Morphine self-administration alters the expression of translational machinery genes in the amygdala of male Lewis rats. J Psychopharmacol 33:882–893

    Article  CAS  PubMed  Google Scholar 

  29. Fatahi Z, Zeinaddini-Meymand A, Karimi-Haghighi S, Moradi M, Khodagholi F, Haghparast A (2020) Naloxone-precipitated withdrawal ameliorates impairment of cost-benefit decision making in morphine-treated rats: Involvement of BDNF, p-GSK3-β, and p-CREB in the amygdala. Neurobiol Learn Mem 167:107138

    Article  CAS  PubMed  Google Scholar 

  30. Eldar-Finkelman H (2002) Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol Med 8:126–132

    Article  CAS  PubMed  Google Scholar 

  31. Kitanaka N, Kitanaka J, Takemura M (2006) Modification of morphine-induced hyperlocomotion and antinociception in mice by clorgyline, a monoamine oxidase-A inhibitor. Neurochem Res 31:829–837

    Article  CAS  PubMed  Google Scholar 

  32. Martins DF, Rosa AO, Gadotti VM, Mazzardo-Martins L, Nascimento FP, Egea J, López MG, Santos AR (2011) The antinociceptive effects of AR-A014418, a selective inhibitor of glycogen synthase kinase-3 beta, in mice. J Pain 12:315–322

    Article  CAS  PubMed  Google Scholar 

  33. Wickens RH, Quartarone SE, Beninger RJ (2017) Inhibition of glycogen synthase kinase-3 by SB 216763 affects acquisition at lower doses than expression of amphetamine-conditioned place preference in rats. Behav Pharmacol 28:262–271

    Article  CAS  PubMed  Google Scholar 

  34. Kitanaka N, Kitanaka J, Takemura M (2003) Behavioral sensitization and alteration in monoamine metabolism in mice after single versus repeated methamphetamine administration. Eur J Pharmacol 474:63–70

    Article  CAS  PubMed  Google Scholar 

  35. Kitanaka J, Kitanaka N, Hall FS, Uhl GR, Tanaka K, Nishiyama N, Takemura M (2012) Straub tail reaction in mice treated with s1 receptor antagonist in combination with methamphetamine. Brain Res 1482:40–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tomita K, Yamanishi-Taira S, Igarashi K, Oogai Y, Kuwahara Y, Roudkenar MH, Roushandeh AM, Miyawaki S, Kurimasa A, Sato T (2022) Oxytocin ameliorates KCC2 decrease induced by oral bacteria-derived LPS that affect rat primary cultured cells and PC-12 cells. Peptides 150:170734

    Article  CAS  PubMed  Google Scholar 

  37. Cavalcante Morais T, Cavalcante Lopes S, Bezerra Carvalho KM, Rodrigues Arruda B, Correia de Souza FT, Salles Trevisan MT, Rao VS, Almeida Santos F (2012) Mangiferin, a natural xanthone, accelerates gastrointestinal transit in mice involving cholinergic mechanism. World J Gastroenterol 18:3207–3214

    PubMed  Google Scholar 

  38. Porter-Stransky KA, Petko AK, Karne SL, Liles LC, Urs NM, Caron MG, Paladini CA, Weinshenker D (2020) Loss of β-arrestin2 in D2 cells alters neuronal excitability in the nucleus accumbens and behavioral responses to psychostimulants and opioids. Addict Biol 25:e12823

    Article  CAS  PubMed  Google Scholar 

  39. Cahill ME, Browne CJ, Wang J, Hamilton PJ, Dong Y, Nestler EJ (2018) Withdrawal from repeated morphine administration augments expression of the RhoA network in the nucleus accumbens to control synaptic structure. J Neurochem 147:84–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC, Pearl LH (2001) Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell 105:721–732

    Article  CAS  PubMed  Google Scholar 

  41. Hughes K, Nikolakaki E, Plyte SE, Totty NF, Woodgett JR (1993) Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBO J 12:803–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang QM, Fiol CJ, DePaoli-Roach AA, Roach PJ (1994) Glycogen synthase kinase-3 beta is a dual specificity kinase differentially regulated by tyrosine and serine/threonine phosphorylation. J Biol Chem 269:14566–14574

    Article  CAS  PubMed  Google Scholar 

  43. Del'Guidice T, Lemasson M, Beaulieu J-M (2011) Role of beta-Arrestin 2 downstream of dopamine receptors in the Basal Ganglia. Front Neuroanat 5

  44. Shibasaki M, Masukawa D, Ishii K, Yamagishi Y, Mori T, Suzuki T (2013) Involvement of the K+–Cl− co-transporter KCC2 in the sensitization to morphine-induced hyperlocomotion under chronic treatment with zolpidem in the mesolimbic system. J Neurochem 125:747–755

    Article  CAS  PubMed  Google Scholar 

  45. Narita M, Suzuki T, Funada M, Misawa M, Nagase H (1993) Involvement of delta-opioid receptors in the effects of morphine on locomotor activity and the mesolimbic dopaminergic system in mice. Psychopharmacology 111:423–426

    Article  CAS  PubMed  Google Scholar 

  46. Barr JL, Unterwald EM (2020) Glycogen synthase kinase-3 signaling in cellular and behavioral responses to psychostimulant drugs. Biochim Biophys Acta Mol Cell Res 1867:118746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Horvitz JC (2002) Dopamine gating of glutamatergic sensorimotor and incentive motivational input signals to the striatum. Behav Brain Res 137:65–74

    Article  CAS  PubMed  Google Scholar 

  48. Laporte SA, Scott MGH (2019) beta-arrestins: multitask scaffolds orchestrating the where and when in cell signalling. Methods Mol Biol 1957:9–55

    Article  CAS  PubMed  Google Scholar 

  49. Bohn LM, Gainetdinov RR, Sotnikova TD, Medvedev IO, Lefkowitz RJ, Dykstra LA, Caron MG (2003) Enhanced rewarding properties of morphine, but not cocaine, in beta(arrestin)-2 knock-out mice. J Neurosci 23:10265–10273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kitanaka J, Kitanaka N, Horie U, Kawasaki Y, Sakamoto T, Yashiro J, Tanaka K, Igarashi K, Tomita K, Shiomoto A, Watabe K, Nakano K, Takahashi H, Nishiyama N, Sato T, Takemura M (2021) Inhibitory effect of SB216763, a selective glycogen synthase kinase-3 inhibitor, on morphine-induced Straub’s tail reaction in mice. Proc Annu Meet Jpn Pharmacol Soc 94:3-P1–11

Download references

Funding

This study was supported, in part, by grants from Japan Society for the Promotion of Science KAKENHI (Grant Nos. 21K06591 to JK; 22K10151 to KT).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Junichi Kitanaka, Nobue Kitanaka, Kazuo Tomita, and F. Scott Hall. The first draft of the manuscript was written by Junichi Kitanaka, Nobue Kitanaka, Kazuo Tomita, and F. Scott Hall, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Junichi Kitanaka.

Ethics declarations

Competing interests

The authors confirm that this article content has no conflict of interest.

Ethics Approval

Animal handling and care were conducted in accordance with the Guide for the Care and Use of Laboratory Animals (8th edition, Institute of Laboratory Animal Resources-National Research Council, National Academy Press, 2011), and all experiments were reviewed and approved by the Institutional Animal Research Committee of Hyogo Medical University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitanaka, J., Kitanaka, N., Tomita, K. et al. Glycogen Synthase Kinase-3 Inhibitors Block Morphine-Induced Locomotor Activation, Straub Tail, and Depression of Rearing in Mice Via a Possible Central Action. Neurochem Res 48, 2230–2240 (2023). https://doi.org/10.1007/s11064-023-03902-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-03902-2

Keywords

Navigation