Skip to main content
Log in

Vitamin D (VD3) Intensifies the Effects of Exercise and Prevents Alterations of Behavior, Brain Oxidative Stress, and Neuroinflammation, in Hemiparkinsonian Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In the present study, we investigated the effects of physical exercise in the presence of Vitamin D3 (VD3), on 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rats. The animals were divided into sham-operated (SO), 6-OHDA-lesioned, and 6-OHDA-lesioned plus VD3 (1 µg/kg, 21 days), in the absence (no exercise, NE) and presence (with exercise, WE) of physical exercise on a treadmill (30 min, speed of 20 cm/s, once a day/21 days). This procedure started, 24 h after the stereotaxic surgery (injections of 6-OHDA into the right striatum). The animals were then subjected to behavioral (rotarod, open field, and apomorphine tests) and their brain areas were dissected for neurochemical, dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) determinations, and immunohistochemical studies for tyrosine hydroxylase (TH), dopamine transporter (DAT), and vitamin D receptor (VD3R). The effects on the brain oxidative stress: nitrite/nitrate, glutathione (GSH), and malondialdehyde (MDA) measurements were also evaluated. Behavioral changes of the 6-OHDA lesioned group were improved by exercise plus VD3. Similar results were observed in dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) concentrations increased by exercise and VD3, compared with SO groups. Additionally, tyrosine hydroxylase (TH) and dopamine transporter (DAT) immunoexpressions were decreased in the 6-OHDA-lesioned groups, with values normalized after exercise and VD3. The VD3 receptor immunoexpression decreased in the 6-OHDA (NE) group, and this was attenuated by exercise, especially after VD3. While 6-OHDA lesions increased, VD3 supplementation decreased the oxidative stress, which was intensified by exercise. VD3 showed neuroprotective properties that were intensified by physical exercise. These VD3 actions on hemiparkinsonian rats are possibly related to its antioxidant and anti-inflammatory effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this manuscript. Further inquiries can be directed and are available upon request to the corresponding author.

References

  1. Evatt ML, Delong MR, Khazai N, Rosen A, Triche S, Tangpricha V (2008) Prevalence of vitamin d insufficiency in patients with Parkinson’s disease and Alzheimer’s disease. Arch Neurol 65(10):1348–1352. https://doi.org/10.1001/archneur.65.10.1348

    Article  Google Scholar 

  2. Knekt P, Killkkinen A, Rissanen H, Marniemi J, Saaksjarvi K, Heliovaara M (2010) Serum vitamin D and the risk of Parkinson’s disease. Arch Neurol 67:808–811

    Article  Google Scholar 

  3. Luo X, Ou R, Dutta R, Tian Y, Xiong H, Shang H (2018) Association between serum vitamin D levels and Parkinson’s disease: a systematic review and meta-analysis. Front Neurol. https://doi.org/10.3388/fneur.2018.00909

    Article  Google Scholar 

  4. Fullard ME, Duda JE (2020) A review of the relationship between vitamin D and Parkinson’s disease symptoms. Front Neurol. https://doi.org/10.3389/fneur.2020.00454

    Article  Google Scholar 

  5. Mak MKY, Wong-Yu ISK (2019) Exercise for Parkinson’s disease. Int Rev Neurobiol 147:1–44

    Article  CAS  Google Scholar 

  6. Schootemeijer S, van der Kolk NM, Bloem BR, de Vries NM (2020) Current perspectives on aerobic exercise in people with Parkinson’s disease. Neurotherapeutics 17:1418–1433

    Article  Google Scholar 

  7. Carvalho AO, Sá-Filho AS, Murillo-Rodriguez E, Rocha NB, Carta MG, Machado S (2018) Physical exercise for Parkinson’s disease: clinical and experimental evidence. Clin Practi Epidemiol Ment Health 14:89–98

    Article  Google Scholar 

  8. Bhalsing KS, Abbas MM, Tan LCS (2018) Role of physical activity in Parkinson’s disease ann Indian. Acad Neurol 21(4):242–249

    Google Scholar 

  9. Costa RO, Gadelha-Filho CVJ, Costa AEM, Feitosa ML, Araujo DP, Lucena JD, de Aquino PEA, Lima FAV, Neves KRT, Viana GSB (2017) The treadmill exercise protects against dopaminergic neuron loss and brain oxidative stress in parkinsonian rats. Oxid Med Cell Longev 2017:2138169

    Article  Google Scholar 

  10. Conceição LR, Moura LP, Pauli JR (2019) Benefits of physical exercise on Parkinson’s disease disorders induced in animal models. Motriz. https://doi.org/10.1590/S1980-6574201900030007

    Article  Google Scholar 

  11. Shen X, Wong-Yu IS, Mak MK (2016) Effects of exercise on falls, balance, and gait ability in Parkinson’s disease: a meta-analysis. Neurorehabil Neural Repair 30(6):512–527

    Article  Google Scholar 

  12. Kalyani RR, Stein B, Valiyil R, Manno R, Maynard JW, Crews D (2010) Vitamin D treatment for the prevention of falls in older adults: systematic review and meta-analysis. J Am Geriatr Soc 58:1299–1310

    Article  Google Scholar 

  13. Imaoka M, Higuchi Y, Todo E, Kitagawa T, Ueda T (2016) Low-frequency exercise and vitamin D supplementation reduces falls among institutionalized frail elderly. Int J Gerontol 10:202–206

    Article  Google Scholar 

  14. Antoniak AE, Greig CA (2019) The effect of combined resistance exercise training and vitamin D3 supplementation on musculoskeletal health and function in older adults: a systematic review and meta-analysis. BMJ Open. https://doi.org/10.1136/bmjopen-2016-014619

    Article  Google Scholar 

  15. Sleeman J, Aspray T, Lawson R, Coleman S, Duncan G, Khoo TK, Schoenmakers I, Rochester L, Burn D, Yarnall A (2017) The role of vitamin D in disease progression in early Parkinson’s disease. J Parkinson’s Dis 7:669–675

    Article  CAS  Google Scholar 

  16. Canning CG, Sherrington C, Lord SR, Close JC, Heritier S, Heller GZ, Howard K, Allen NE, Latt MD, Murray SM, O’Rourke SD, Paul SS, Song J, Fung VS (2015) Exercise for falls prevention in Parkinson disease: a randomized controlled trial. Neurology 84(3):304–312

    Article  Google Scholar 

  17. Annweiler C, Montero-Odasso M, Schott AM, Berrut G, Fantino B, Beauchet O (2010) Fall prevention and vitamin D in the elderly: an overview of the key role of the non-bone effects. J Neuroeng Rehabil 7:50. https://doi.org/10.1186/1743-0003-7-50

    Article  Google Scholar 

  18. Zhang HJ, Zhang JR, Mao CJ, Li K, Wang F, Chen J, Liu CF (2019) Relationship between 25-Hydroxyvitamin D, bone density, and Parkinson’s disease symptoms. Acta Neurol Scand 140(4):274–280. https://doi.org/10.1111/ane.13141

    Article  CAS  Google Scholar 

  19. Barichella M, Garrì F, Caronni S, Bolliri C, Zocchi L, Macchione MC, Ferri V, Calandrella D, Pezzoli G (2022) Vitamin D status and Parkinson’s disease. Brain Sci 12(6):790. https://doi.org/10.3390/brainsci12060790

    Article  Google Scholar 

  20. Pignolo A, Mastrilli S, Davì C, Arnao V, Aridon P, dos Santos Mendes FA, Gagliardo C, D’Amelio M (2022) Vitamin D and Parkinson’s disease. Nutrients 14:1220. https://doi.org/10.3390/nu14061220

    Article  CAS  Google Scholar 

  21. Luong KVQ, Nguyên LTH (2017) Vitamin D and Parkinson’s disease. J Neurosci Res 90:2227–2236

    Article  Google Scholar 

  22. Luthra NS, Kim S, Zhang Y, Christine CW (2018) Characterization of vitamin D supplementation and clinical outcomes in a large cohort of early Parkinson’s disease. J Clin Mov Disord 5:7. https://doi.org/10.1186/s40734-018-0074-6

    Article  Google Scholar 

  23. Lima LAR, Lopes MJP, Costa RO, Lima FAV, Neves KRT, Andrade GM, Viana GSB (2018) Vitamin D protects dopaminergic neurons against neuroinflammation and oxidative stress in hemiparkinsonian rats. J Neuroinflamm 15:249. https://doi.org/10.1186/s12974-018-1266-6

    Article  CAS  Google Scholar 

  24. Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L (2013) Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. J Exerc Rehabil 9:354–361

    Google Scholar 

  25. Leal LKAM, Lima LA, Aquino PEA, Sousa JAC, Gadelha-Filho CVJ, Calou IBF, Lopes MJP, Lima FAV, Neves KRT, Andrade GM, Viana GSB (2020) Vitamin D (VD3) antioxidative and anti-inflammatory activities: peripheral and central effects. Eur J Pharmacol 879:173099

    Article  Google Scholar 

  26. Hald A, Lotharius J (2016) Oxidative stress and inflammation in Parkinson’s disease: is there a causal link? J Parkinson’s Dis 6(1):29–37

    Google Scholar 

  27. Tillerson JL, Caudle WM, Reverón ME, Miller GW (2003) Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson’s disease. Neuroscience 119:899–911

    Article  CAS  Google Scholar 

  28. Chen YH, Kuo TT, Kao JH, Huang EY, Hsieh TH, Chou YC, Hoffer BJ (2018) Exercise ameliorates motor deficits and improves dopaminergic functions in the rat hemi-Parkinson’s model. Sci Rep 8:3973

    Article  Google Scholar 

  29. Iancu R, Mohapel P, Brundin P, Paul G (2005) Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice. Behav Brain Res 162:1–10

    Article  CAS  Google Scholar 

  30. Su RJ, Zhen JL, Wang W, Zhan JL, Zheng Y, Wang XM (2017) Time-course behavioral features are correlated with Parkinson’s disease-associated pathology in a 6-hydroxydopamine hemiparkinsonian rat model. Mol Med Rep. https://doi.org/10.3892/mmr.2017.8277

    Article  Google Scholar 

  31. Carter RJ, Morton J, Dunnett SB (2001) Motor coordination and balance in rodents. Curr Protoc Neurosci. https://doi.org/10.1002/0471142301.ns0812s15

    Article  Google Scholar 

  32. Hamm RJ, Pike BR, O’Dell DM, Lyeth BG, Jenkins LW (1994) The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. J Neurotrauma 11(2):187–196

    Article  CAS  Google Scholar 

  33. Riedesel AK, Helgers SOA, Abdulbaki A, Hatipoglu Majernik G, Alam M, Krauss JK, Schwabe K (2021) Severity assessment of complex and repeated intracranial surgery in rats. Eur Surg Res. https://doi.org/10.1159/000520678

    Article  Google Scholar 

  34. Seibenhener ML, Wooten MC (2015) Use of the open field maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp 96:52434. https://doi.org/10.3791/52434

    Article  Google Scholar 

  35. Johnson ME, Salvatore MF, Maiolo SA, Bobrovskaya L (2018) Tyrosine hydroxylase as a sentinel for central and peripheral tissue responses in Parkinson’s progression: evidence from clinical studies and neurotoxin models. Prog Neurobiol 165–167:1–25

    Article  Google Scholar 

  36. Daubner SC, Le T, Wang S (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch BiochemBiophys 508:1–12

    Article  CAS  Google Scholar 

  37. Vaughan RA, Foster JD (2013) Mechanisms of dopamine transporter regulation in normal and disease states. Trends Pharmacol Sci. https://doi.org/10.1016/j.tips.2013.07.005

    Article  Google Scholar 

  38. Shih MC, Hoexter MQ, Andrade LA, Bressan RA (2006) Parkinson’s disease and dopamine transporter neuroimaging: a critical review. Sao Paulo Med J 124(3):168–175

    Article  Google Scholar 

  39. Butler MW, Burt A, Edwards TL, Zuchner S, Scott WK, Martin ER, Vance JM, Wang L (2011) Vitamin D receptor gene as a candidate gene for Parkinson’s disease. Am Hum Genet 75:201–210

    Article  CAS  Google Scholar 

  40. de Aquino PEA, Lustosa IR, Sousa SNS, Chaves-Filho AJM, Lima FAV, Santos ADC, Gramosa NV, Silveira ER, Viana GSB (2020) The N-Methyl-(2S, 4R)-trans-4-hydroxy-L-proline-enriched methanol fraction from Sideroxylon obtusifolium shows an anticonvulsant activity associated with its anti-inflammatory/ antioxidant actions. Planta Med Int Open. 7:e158–e169

    Article  Google Scholar 

  41. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  Google Scholar 

  42. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  Google Scholar 

  43. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  CAS  Google Scholar 

  44. Sedlák J, Hanus L (1982) Changes of glutathione and protein-bound SH-groups concentration in rat adrenals under acute and repeated stress. Endocrinol Exp 16(2):103–109

    Google Scholar 

  45. Borrione P, Tranchita E, Sansone P, Parisi A (2014) Effects of physical activity in Parkinson’s disease: a new tool for rehabilitation. World J Methodol 26:133–143

    Article  Google Scholar 

  46. Shu H-F, Yang T, Yu S-X, Huang H-D, Jiang L-L, Gu J-W, Kuang Y-Q (2014) Aerobic exercise for Parkinson’s disease: a systematic review and meta-analysis of randomized controlled trials. PLoS ONE 9(7):e100503

    Article  Google Scholar 

  47. Murray DK, Sacheli MA, Eng JJ, Stoessl AJ (2014) The effects of exercise on cognition in Parkinson’s disease: a systematic review. Transl Neurodegener 3(1):5

    Article  Google Scholar 

  48. Hou L, Chen W, Liu X, Qiao D, Zhou F-M (2017) Exercise-induced neuroprotection of the nigrostriatal dopamine system in Parkinson’s disease. Front Aging Neurosci. https://doi.org/10.3380/fnagi.2017.00358

    Article  Google Scholar 

  49. Ma C-L, Ma X-T, Wang J-J, Liu H, Chen Y-F, Yang Y (2017) Physical exercise induces hippocampal neurogenesis and prevents cognitive decline. Behav Brain Res 317:332–339

    Article  Google Scholar 

  50. Guillot X, Semerano L, Saidenberg-Kermanac’h N, Falgarone G, Boissier MC (2010) Vitamin D and inflammation. Joint Bone Spine 77:552–557

    Article  CAS  Google Scholar 

  51. Carnnell JJ, Grant WB, Holick MF (2014) Vitamin D and inflammation. Dermato-Endocrinology 61:e983401

    Article  Google Scholar 

  52. Mousa A, Misso M, Teede H, Scragg R, Courten B (2016) Effect of Vitamin D supplementation on inflammation: protocol for a systematic review. BMJ Open 6:e010804. https://doi.org/10.1136/bmjopen-2015-010804

    Article  Google Scholar 

  53. Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG, Ramos-Escobar N (2019) Neuroinflammation as a common feature of neurodegenerative disorders. Front Pharmacol 10:1008

    Article  CAS  Google Scholar 

  54. Kempuraj D, Thangavel R, Selvakumar GP, Zaheer S, Ahmed ME, Raikwar SP, Iyer S, Bhagavan SM, Beladakere-Ramaswamy S, Zaheer A (2017) Brain, and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front Cell Neurosci. https://doi.org/10.3389/fncel.2017.00216

    Article  Google Scholar 

  55. Petzinger GM, Holschneider DP, Fischer BE, McEwen S, Kintz N, Halliday M, Toy W, Walsh JW, Beeler J, Jakowec MW (2015) The effects of exercise on dopamine neurotransmission in Parkinson’s disease: targeting neuroplasticity to modulate basal ganglia circuitry. Brain Plast 1:29–39

    Article  CAS  Google Scholar 

  56. Sacheli MA, Neva JL, Lakhani B, Murray DK, Vafai N, Shahinfard E, English C, McCormick S, Dinelle K, Neilson N, McKenzie J, Schulzer M, McKenzie DC, Appel-Cresswell S, McKeown MJ, Boyd LA, Sossi V, Stoessl AJ (2019) Exercise increases caudate dopamine release and ventral striatal activation in Parkinson’s disease. Mov Disord 34:1891–1900

    Article  CAS  Google Scholar 

  57. Palasz E, Niewiadomski W, Gasiorowska A, Wysocka A, Stepniewska A, Niewiadomska G (2019) Exercise-induced neuroprotection and recovery of motor function in animal models of Parkinson’s disease. Front Neurol. https://doi.org/10.3389/fneur.2019.01143

    Article  Google Scholar 

  58. Haavick J, Toska K (1998) Tyrosine hydroxylase and Parkinson’s disease. Mol Neurobiol 16:285–309

    Article  Google Scholar 

  59. Tabrez S, Jabir NR, Shakil S, Greig NH, Alam Q, Abuzenadah AM, Damanhouri GA, Kamal MA (2012) A synopsis on the role of tyrosine hydroxylase in Parkinson’s disease. CNS Neurol Disord Drug Targets 11:395–409

    Article  CAS  Google Scholar 

  60. Chen Y, Lian Y, Ma Y, Wu C, Zheng Y, Xie N (2017) The expression and significance of tyrosine hydroxylase in the brain tissue of Parkinson’s’ disease rats. Exp Ther Med 14(5):4813–4816

    CAS  Google Scholar 

  61. Orme RP, Bhangal MS, Fricker RA (2013) Calcitriol imparts neuroprotection in vitro to midbrain dopaminergic neurons by upregulating GDNF expression. PLoS ONE 8(4):e62040

    Article  CAS  Google Scholar 

  62. Cui X, Pertile R, Liu P, Eyles DW (2015) Vitamin D regulates tyrosine hydroxylase expression: N-cadherin is a possible mediator. Neurosci 304:90–100

    Article  CAS  Google Scholar 

  63. Nutt JG, Carter JH, Sexton GJ (2004) The dopamine transporter: importance in Parkinson’s disease. Ann Neurol 55:766–773

    Article  CAS  Google Scholar 

  64. Ikeda K, Ebina J, Kawabe K, Iwasaki Y (2019) Dopamine transporter imaging in Parkinson disease: progressive changes and therapeutic modification after anti-parkinsonian medications. Intern Med 58:1665–1672

    Article  CAS  Google Scholar 

  65. Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3(4):461–491

    Article  CAS  Google Scholar 

  66. Araújo de Lima L, Oliveira Cunha PL, Felicio Calou IB, Tavares Neves KR, Facundo HT, de Barros Viana GS (2022) Effects of vitamin D (VD3) supplementation on the brain mitochondrial function of male rats, in the 6-OHDA-induced model of Parkinson’s disease. Neurochem Int. https://doi.org/10.1016/j.neuint.2022.105280

    Article  Google Scholar 

  67. Park JS, Davis RL, Sue CM (2018) Mitochondrial dysfunction in Parkinson’s disease: new mechanistic insights and therapeutic perspectives. Curr Neurol Neurosci Rep 18(5):21. https://doi.org/10.1007/s11910-018-0829-3

    Article  CAS  Google Scholar 

  68. Wright R (2022) Mitochondrial dysfunction and Parkinson’s disease. Nat Neurosci 25:2. https://doi.org/10.1038/s41593-021-00989-0NEURODEGENERATIVEDISEASE

    Article  CAS  Google Scholar 

  69. Bayo-Olugbami A, Nafiu AB, Amin A, Ogundele OM, Lee CC, Owoyele BV (2022) Vitamin D attenuated 6-OHDA-induced behavioural deficits, dopamine dysmetabolism, oxidative stress, and neuro-inflammation in mice. Nutr Neurosci 25(4):823–834

    Article  CAS  Google Scholar 

  70. Pike JW, Meyer MB (2010) The vitamin D receptor: new paradigms for the regulation of gene expression by 1,25-dihydroxyvitamin D3. Endocrinol Metab Clin North Am 39:255–269

    Article  CAS  Google Scholar 

  71. Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397

    Article  CAS  Google Scholar 

  72. Hirsch EC, Vyas S, Hunot S (2012) Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S210–S212

    Article  Google Scholar 

  73. Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26-36

    Article  CAS  Google Scholar 

  74. Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR (2015) Oxidative stress and Parkinson’s disease. Front Neuroanat 9:91

    Article  Google Scholar 

  75. Chang K-H, Chen C-M (2020) The role of oxidative stress in Parkinson’s disease. Antioxidants 9(7):597

    Article  CAS  Google Scholar 

  76. Kim GH, Kim JE, Rhie SJ, Yoon S (2015) The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 24(4):325–340

    Article  Google Scholar 

  77. Wei Z, Li X, Li X, Liu Q, Cheng Y (2018) Oxidative stress in Parkinson’s disease: a systematic review and meta-analysis. Front Mol Neurosci 5(11):236

    Article  Google Scholar 

  78. Martin HL, Teismann P (2009) Glutathione-a review on its role and significance in Parkinson’s disease. FASEB J 23(10):3263–3272

    Article  CAS  Google Scholar 

  79. Bjørklund G, Peana M, Maes M, Dadar M, Severin B (2021) The glutathione system in Parkinson’s disease and its progression. Neurosci Biobehav Ver 120:470–478

    Article  Google Scholar 

  80. Aoyama K, Nakaki T (2013) Impaired glutathione synthesis in neurodegeneration. Int J Mol Sci 14(10):21021–21044

    Article  Google Scholar 

  81. Aoyama K (2021) Glutathione in the brain. Int J Mol Sci 22(9):5010

    Article  CAS  Google Scholar 

  82. Iskusnykh IY, Zakharova AA, Pathak D (2022) Glutathione in brain disorders and aging. Molecules 27:324

    Article  CAS  Google Scholar 

  83. Wang HL, Zhang J, Li YP, Dong L, Chen YZ (2021) Potential use of glutathione as a treatment for Parkinson’s disease. Exp Ther Med 21(2):125

    Article  CAS  Google Scholar 

  84. Crotty GF, Schwarzschild MA (2020) Chasing protection in Parkinson’s disease: does exercise reduce risk and progression? Front Aging Neurosci 12:186

    Article  Google Scholar 

  85. Lv L, Tan X, Peng X, Bai R, Xiao Q, Zou T, Tan J, Zhang H, Wang C (2020) The relationships of vitamin D, vitamin D receptor gene polymorphisms, and vitamin D supplementation with Parkinson’s disease. Transl Neurodegener 9(1):34

    Article  CAS  Google Scholar 

  86. Xu X, Fu Z, Le W (2019) Exercise and Parkinson’s disease. Int Rev Neurobiol 147:45–74

    Article  CAS  Google Scholar 

  87. Tsukita K, Sakamaki-Tsukita H, Takahashi R (2022) Long-term effect of regular physical activity and exercise habits in patients with early Parkinson disease. Neurology 98(8):e859–e871

    Article  CAS  Google Scholar 

  88. McKenna C, Salvador A, Askow A, Paulussen KJM, Keeble A, Paluska S, De Lisio M, Khan N, Burd N (2021) Higher protein intake does not potentiate skeletal muscle vitamin D receptor. Curr Dev Nutr 5(Supplement_2):512

    Article  Google Scholar 

  89. Lithgow H, Florida-James G, Ross M, Duncan G, Leggate M (2021) Exercise acutely increases vitamin D receptor expression in T lymphocytes in vitamin D-deficient men, independent of age. Exp Physiol 106(7):1460–1469. https://doi.org/10.1113/EP089480

    Article  CAS  Google Scholar 

  90. Latham CM, Brightwell CR, Keeble AR, Munson BD, Thomas NT, Zagzoog AM, Fry CS, Fry JL (2021) Vitamin D promotes skeletal muscle regeneration and mitochondrial health. Front Physiol 14(12):660498. https://doi.org/10.3389/fphys.2021.660498.PMID:33935807;PMCID:PMC8079814

    Article  Google Scholar 

  91. Latimer CS, Brewer LD, Searcy JL, Chen KC, Popović J, Kraner SD, Thibault O, Blalock EM, Landfield PW, Porter NM (2014) Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats. Proc Natl Acad Sci USA 111(41):E4359–E4366. https://doi.org/10.1073/pnas.1404477111

    Article  CAS  Google Scholar 

  92. Redenšek S, Kristanc T, Blagus T, Trošt M, Dolžan V (2022) Genetic variability of the vitamin D receptor affects susceptibility to Parkinson’s disease and dopaminergic treatment adverse events. Front Aging Neurosci 19(14):853277. https://doi.org/10.3389/fnagi.2022.853277

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Francisco Vagnaldo Fechine Jamacuru and Prof. Héber José de Moura for their expertise in statistical data analyses, and also to Prof. M.O.L. Viana for the grammatical orthographic revision of the manuscript.

Funding

The authors are grateful for the financial support of the Brazilian National Research Council (CNPq), the Coordination for Improvement of Higher Level Personnel (CAPES), and the Foundation for Scientific and Technological Development Support of the State of Ceará (FUNCAP).

Author information

Authors and Affiliations

Authors

Contributions

ROdC: Conducted all behavioral tests; CVJGF: Helped in handling and caring for the animals’ maintenance; PEAdA and LARL and JDdL: Carried out all the biochemical assays; WLCR: Responsible for the animal’s care and handling; FAVL and KRTN: Carried out all the immunohistochemical assays; GSdBV: Coordinated the project and wrote the final version of the manuscript, read and approved by all authors.

Corresponding author

Correspondence to Glauce Socorro de Barros Viana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The research followed the ethical principles of the Brazilian National Council for Animal Experimentation (CONCEA). The study was submitted to and approved by the Animal Research Ethics Committee (CEPA) of the Faculty of Medicine of the Federal University of Ceará, under protocol number 82/2016. The experiments were performed according to the Guide for the Care and Use of Laboratory Animals: Eighth Edition, National Academy of Sciences, Institute for Laboratory Animal Research (ILAR), in 2011. NIH (Office of Laboratory Animal Welfare).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa, R.O., Gadelha-Filho, C.V.J., de Aquino, P.E.A. et al. Vitamin D (VD3) Intensifies the Effects of Exercise and Prevents Alterations of Behavior, Brain Oxidative Stress, and Neuroinflammation, in Hemiparkinsonian Rats. Neurochem Res 48, 142–160 (2023). https://doi.org/10.1007/s11064-022-03728-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03728-4

Keywords

Navigation