Skip to main content
Log in

Nandrolone Supplementation Promotes AMPK Activation and Divergent 18[FDG] PET Brain Connectivity in Adult and Aged Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Decreased anabolic androgen levels are followed by impaired brain energy support and sensing with loss of neural connectivity during physiological aging, providing a neurobiological basis for hormone supplementation. Here, we investigated whether nandrolone decanoate (ND) administration mediates hypothalamic AMPK activation and glucose metabolism, thus affecting metabolic connectivity in brain areas of adult and aged mice. Metabolic interconnected brain areas of rodents can be detected by positron emission tomography using 18FDG-mPET. Albino CF1 mice at 3 and 18 months of age were separated into 4 groups that received daily subcutaneous injections of either ND (15 mg/kg) or vehicle for 15 days. At the in vivo baseline and on the 14th day, brain 18FDG-microPET scans were performed. Hypothalamic pAMPKT172/AMPK protein levels were assessed, and basal mitochondrial respiratory states were evaluated in synaptosomes. A metabolic connectivity network between brain areas was estimated based on 18FDG uptake. We found that ND increased the pAMPKT172/AMPK ratio in both adult and aged mice but increased 18FDG uptake and mitochondrial basal respiration only in adult mice. Furthermore, ND triggered rearrangement in the metabolic connectivity of adult mice and aged mice compared to age-matched controls. Altogether, our findings suggest that ND promotes hypothalamic AMPK activation, and distinct glucose metabolism and metabolic connectivity rearrangements in the brains of adult and aged mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available in the Open Science Framework repository, https://doi.org/10.17605/OSF.IO/K7CX3.

References

  1. López-Otín C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Andersson U, Filipsson K, Abbott CR et al (2004) AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 279:12005–12008. https://doi.org/10.1074/jbc.C300557200

    Article  CAS  PubMed  Google Scholar 

  3. Dagon Y, Hur E, Zheng B et al (2012) p70S6 kinase phosphorylates AMPK on serine 491 to mediate Leptin’s effect on food intake. Cell Metab 16:104–112. https://doi.org/10.1016/j.cmet.2012.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thomson DM, Herway ST, Fillmore N et al (2008) AMP-activated protein kinase phosphorylates transcription factors of the CREB family. J Appl Physiol 104:429–438. https://doi.org/10.1152/japplphysiol.00900.2007

    Article  CAS  PubMed  Google Scholar 

  5. Walton MR, Dragunow M (2000) Is CREB a key to neuronal survival? Trends Neurosci 23:48–53. https://doi.org/10.1016/S0166-2236(99)01500-3

    Article  CAS  PubMed  Google Scholar 

  6. Barnes K, Ingram JC, Porras OH et al (2002) Activation of GLUT1 by metabolic and osmotic stress: potential involvement of AMP-activated protein kinase (AMPK). J Cell Sci 115:2433–2442

    Article  CAS  Google Scholar 

  7. Merrill GF, Kurth EJ, Hardie DG, Winder WW (1997) AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol 273:E1107–E1112

    CAS  PubMed  Google Scholar 

  8. Habets DDJ, Coumans WA, El Hasnaoui M et al (2009) Crucial role for LKB1 to AMPKalpha2 axis in the regulation of CD36-mediated long-chain fatty acid uptake into cardiomyocytes. Biochem Biophys Acta 1791:212–219. https://doi.org/10.1016/j.bbalip.2008.12.009

    Article  CAS  PubMed  Google Scholar 

  9. Lopez-Otin C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chapman J, Fielder E, Passos JF (2019) Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Lett 593:1566–1579. https://doi.org/10.1002/1873-3468.13498

    Article  CAS  PubMed  Google Scholar 

  11. Torres AK, Jara C, Park-Kang HS et al (2021) Synaptic mitochondria: an early target of amyloid-β and Tau in Alzheimer’s disease. J Alzheimer’s Dis 84:1391–1414. https://doi.org/10.3233/JAD-215139

    Article  CAS  Google Scholar 

  12. Brown MR, Sullivan PG, Geddes JW (2006) Synaptic mitochondria are more susceptible to Ca2+overload than nonsynaptic mitochondria. J Biol Chem 281:11658–11668. https://doi.org/10.1074/jbc.M510303200

    Article  CAS  PubMed  Google Scholar 

  13. Rangaraju V, Calloway N, Ryan TA (2014) Activity-driven local ATP synthesis is required for synaptic function. Cell 156:825–835. https://doi.org/10.1016/j.cell.2013.12.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rangaraju V, Lauterbach M, Schuman EM (2019) Spatially stable mitochondrial compartments fuel local translation during plasticity. Cell 176:73-84.e15. https://doi.org/10.1016/j.cell.2018.12.013

    Article  CAS  PubMed  Google Scholar 

  15. Kakimoto A, Ito S, Okada H, et al (2016) Age-related sex-specific changes in brain metabolism and morphology. https://doi.org/10.2967/jnumed.115.166439

  16. Brendel M, Focke C, Blume T, et al (2017) Time courses of cortical glucose metabolism and microglial activity across the life-span of wild-type mice: a PET study. J Nucl Med https://doi.org/10.2967/jnumed.117.195107

  17. Mitchell R, Hollis S, Rothwell C, Robertson WR (1995) Age related changes in the pituitary-testicular axis in normal men; lower serum testosterone results from decreased bioactive LH drive. Clin Endocrinol (Oxf) 42:501–507

    Article  CAS  Google Scholar 

  18. Jia J, Cui C, Yan X et al (2016) Effects of testosterone on synaptic plasticity mediated by androgen receptors in male SAMP8 mice. J Toxicol Environ Health A. https://doi.org/10.1080/15287394.2016.1193113

    Article  PubMed  Google Scholar 

  19. Devoogd TJ, Nixdorf B, Nottebohm F (1985) Synaptogenesis and changes in synaptic morphology related to acquisition of a new behavior. Brain Res. https://doi.org/10.1016/0006-8993(85)90539-6

    Article  PubMed  Google Scholar 

  20. Bahrke MS, Iip EY, Wright JE (1996) Psychological and behavioural effects of endogenous testosterone and anabolic-androgenic steroids 22:367–390

    CAS  Google Scholar 

  21. Miller KK, Deckersbach T, Rauch SL et al (2004) Testosterone administration attenuates regional brain hypometabolism in women with anorexia nervosa 132:197–207. https://doi.org/10.1016/j.pscychresns.2004.09.003

    Article  CAS  Google Scholar 

  22. Howell SJ, Radford JA, Smets EMA, Shalet SM (2000) Fatigue, sexual function and mood following treatment for haematological malignancy: the impact of mild Leydig cell dysfunction. Br J Cancer 82:789–793

    Article  CAS  Google Scholar 

  23. Burris A, Banks S, Carter C et al (1992) A long-term, prospective study of the physiologic and behavioural effects of hormone replacement in untreated hypogonadal men. J Androl 13:297–304

    CAS  PubMed  Google Scholar 

  24. Brown-Séquard C (1899) Du role physiologique et thérapéutique d’un suc extrait de testicules d’animaux d’après nombre des faix observés chez l’homme. Archives de Physiologie Normale et Pathologique 1:739–746

    Google Scholar 

  25. Carteri RB, Kopczynski A, Menegassi LN et al (2019) Anabolic-androgen steroids effects on bioenergetics responsiveness of synaptic and extrasynaptic mitochondria. Toxicol Lett 307:72–80. https://doi.org/10.1016/j.toxlet.2019.03.004

    Article  CAS  PubMed  Google Scholar 

  26. Rodolphi MS, Kopczynski A, Carteri RB et al (2021) Glutamate transporter-1 link astrocytes with heightened aggressive behavior induced by steroid abuse in male CF1 mice. Horm Behav 127:104872. https://doi.org/10.1016/j.yhbeh.2020.104872

    Article  CAS  PubMed  Google Scholar 

  27. Kalinine E, Zimmer ER, Zenki KC et al (2014) Nandrolone-induced aggressive behavior is associated with alterations in extracellular glutamate homeostasis in mice. Horm Behav 66:383–392. https://doi.org/10.1016/j.yhbeh.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  28. Carteri RB, Kopczynski A, Rodolphi MS et al (2019) Testosterone administration after traumatic brain injury reduces mitochondrial dysfunction and neurodegeneration. J Neurotrauma 36:2246–2259. https://doi.org/10.1089/neu.2018.6266

    Article  PubMed  PubMed Central  Google Scholar 

  29. Singh IN, Sullivan PG, Deng Y et al (2006) Time course of post-traumatic mitochondrial oxidative damage and dysfunction in a mouse model of focal traumatic brain injury: implications for neuroprotective therapy. J Cereb Blood Flow Metab 26:1407–1418. https://doi.org/10.1038/sj.jcbfm.9600297

    Article  CAS  PubMed  Google Scholar 

  30. Bianchi VE, Rizzi L, Bresciani E et al (2020) Androgen therapy in neurodegenerative diseases. J Endocr Soc. https://doi.org/10.1210/jendso/bvaa120

    Article  PubMed  PubMed Central  Google Scholar 

  31. Guadalupe-Grau A, Rodríguez-García L, Torres-Peralta R et al (2016) Greater basal skeletal muscle AMPKα phosphorylation in men than in women: associations with anaerobic performance. Eur J Sport Sci 16:455–464. https://doi.org/10.1080/17461391.2015.1063701

    Article  PubMed  Google Scholar 

  32. Ghanim H, Dhindsa S, Batra M et al (2020) Testosterone increases the expression and phosphorylation of AMP kinase α in men with hypogonadism and type 2 diabetes. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgz288

    Article  PubMed  Google Scholar 

  33. Barrientos G, Llanos P, Basualto-Alarcón C, Estrada M (2020) Androgen-regulated cardiac metabolism in aging men. Front Endocrinol 11:316. https://doi.org/10.3389/fendo.2020.00316

    Article  Google Scholar 

  34. Wilson C, Contreras-Ferrat A, Venegas N et al (2013) Testosterone increases GLUT4-dependent glucose uptake in cardiomyocytes. J Cell Physiol 228:2399–2407. https://doi.org/10.1002/jcp.24413

    Article  CAS  PubMed  Google Scholar 

  35. Mitsuhashi K, Senmaru T, Fukuda T et al (2016) Testosterone stimulates glucose uptake and GLUT4 translocation through LKB1/AMPK signaling in 3T3-L1 adipocytes. Endocrine 51:174–184. https://doi.org/10.1007/s12020-015-0666-y

    Article  CAS  PubMed  Google Scholar 

  36. Tennakoon JB, Shi Y, Han JJ et al (2014) Androgens regulate prostate cancer cell growth via an AMPK-PGC-1α-mediated metabolic switch. Oncogene 33:5251–5261. https://doi.org/10.1038/onc.2013.463

    Article  CAS  PubMed  Google Scholar 

  37. Borgquist A, Meza C, Wagner EJ (2015) The role of AMP-activated protein kinase in the androgenic potentiation of cannabinoid-induced changes in energy homeostasis. Am J Physiol Endocrinol Metab 308:E482–E495. https://doi.org/10.1152/ajpendo.00421.2014

    Article  CAS  PubMed  Google Scholar 

  38. Rodolphi MS, Kopczynski A, Carteri RB et al (2020) Glutamate transporter-1 link astrocytes with heightened aggressive behavior induced by steroid abuse in male CF1 mice. Horm Behav 127:104872. https://doi.org/10.1016/j.yhbeh.2020.104872

    Article  CAS  PubMed  Google Scholar 

  39. Zanirati G, Azevedo PN, Venturin GT et al (2018) Depression comorbidity in epileptic rats is related to brain glucose hypometabolism and hypersynchronicity in the metabolic network architecture. Epilepsia. https://doi.org/10.1111/epi.14057

    Article  PubMed  Google Scholar 

  40. Silva RBM, Greggio S, Venturin GT et al (2018) Beneficial effects of the calcium channel blocker CTK 01512–2 in a mouse model of multiple sclerosis. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1049-1

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mirrione MM, Schiffer WK, Siddiq M et al (2006) PET imaging of glucose metabolism in a mouse model of temporal lobe epilepsy. Synapse (New York, NY) 59:119–121. https://doi.org/10.1002/syn.20216

    Article  CAS  Google Scholar 

  42. Sims NR, Anderson MF (2008) Isolation of mitochondria from rat brain using Percoll density gradient centrifugation. Nat Protoc 3:1228–1239. https://doi.org/10.1038/nprot.2008.105

    Article  CAS  PubMed  Google Scholar 

  43. Sims NR (1990) Rapid isolation of metabolically active mitochondria from rat brain and subregions using Percoll density gradient centrifugation. J Neurochem 55:698–707

    Article  CAS  Google Scholar 

  44. Chance B, WILLIAMS GR, (1955) Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem 217:383–393

    Article  CAS  Google Scholar 

  45. Gnaiger E, Gnaiger E (2012) Mitochondrial pathways and respiratory control an introduction to OXPHOS analysis. Bioenerg Commun 2

  46. Revelle W (2018) psych: procedures for psychological, psychometric, and personality research.

  47. Castro MAA, Wang X, Fletcher MNC et al (2012) RedeR: R/Bioconductor package for representing modular structures, nested networks and multiple levels of hierarchical associations. Genome Biol 13:R29. https://doi.org/10.1186/gb-2012-13-4-r29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Suzuki R, Shimodaira H (2006) Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinf (Oxf, Engl) 22:1540–1542. https://doi.org/10.1093/bioinformatics/btl117

    Article  CAS  Google Scholar 

  49. Kanayama G, Hudson JI, Pope HG (2010) Illicit anabolic-androgenic steroid use. Horm Behav 58:111–121. https://doi.org/10.1016/j.yhbeh.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  50. Troncoso MF, Pavez M, Wilson C et al (2021) Testosterone activates glucose metabolism through AMPK and androgen signaling in cardiomyocyte hypertrophy. Biol Res 54:3. https://doi.org/10.1186/s40659-021-00328-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ghanim H, Dhindsa S, Batra M et al (2020) Testosterone increases the expression and phosphorylation of AMP kinase α in men with hypogonadism and type 2 diabetes. J Clin Endocrinol Metab 105:1169–1175. https://doi.org/10.1210/clinem/dgz288

    Article  Google Scholar 

  52. Borgquist A, Meza C, Wagner EJ (2015). The role of AMP-activated protein kinase in the androgenic potentiation of cannabinoid-induced changes in energy homeostasis Am J Physiol. https://doi.org/10.1152/ajpendo.00421.2014

    Article  Google Scholar 

  53. Lage R, Dieguez C, Vidal-Puig A, Lopez M (2008) AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol Med 14:539–549. https://doi.org/10.1016/j.molmed.2008.09.007

    Article  CAS  PubMed  Google Scholar 

  54. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262. https://doi.org/10.1038/nrm3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bajpai P, Koc E, Sonpavde G et al (2019) Mitochondrial localization, import, and mitochondrial function of the androgen receptor. J Biol Chem. https://doi.org/10.1074/jbc.RA118.006727

    Article  PubMed  PubMed Central  Google Scholar 

  56. Molano F, Saborido A, Delgado J et al (1999) Rat liver lysosomal and mitochondrial activities are modified by anabolic-androgenic steroids. Med Sci Sports Exerc 31:243–250. https://doi.org/10.1097/00005768-199902000-00007

    Article  CAS  PubMed  Google Scholar 

  57. Holloway GP, Holwerda AM, Miotto PM et al (2018) Age-associated impairments in mitochondrial ADP sensitivity contribute to redox stress in senescent human skeletal muscle. Cell Rep 22:2837–2848. https://doi.org/10.1016/J.CELREP.2018.02.069

    Article  CAS  PubMed  Google Scholar 

  58. Zitzmann M, Weckesser M, Schober O, Nieschlag E (2001) Changes in cerebral glucose metabolism and visuospatial capability in hypogonadal males under testosterone substitution therapy. Exp Clin Endocrinol Diabetes 109:302–304. https://doi.org/10.1055/s-2001-16351

    Article  CAS  PubMed  Google Scholar 

  59. Tan RS (2013) Testosterone effect on brain metabolism in elderly patients with Alzheimer’s disease: comparing two cases at different disease stages. Aging Clin Exp Res 25:343–347. https://doi.org/10.1007/s40520-013-0049-2

    Article  CAS  PubMed  Google Scholar 

  60. Maki PM, Ernst M, London ED et al (2007) Intramuscular testosterone treatment in elderly men: evidence of memory decline and altered brain function. J Clin Endocrinol Metab 92:4107–4114. https://doi.org/10.1210/jc.2006-1805

    Article  CAS  PubMed  Google Scholar 

  61. Voss CM, Andersen J, Jakobsen E et al (2020) AMP-activated protein kinase (AMPK) regulates astrocyte oxidative metabolism by balancing TCA cycle dynamics. Glia 68:1824–1839. https://doi.org/10.1002/glia.23808

    Article  PubMed  Google Scholar 

  62. Ronnett G, Ramamurthy S, Kleman AM et al (2009) AMPK in the brain: its roles in energy balance and neuroprotection. J Neurochem 109:17–23. https://doi.org/10.1111/j.1471-4159.2009.05916.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jakobsen E, Andersen J, Christensen SK et al (2021) Pharmacological inhibition of mitochondrial soluble adenylyl cyclase in astrocytes causes activation of AMP-activated protein kinase and induces breakdown of glycogen. Glia 69:2828–2844. https://doi.org/10.1002/glia.24072

    Article  CAS  PubMed  Google Scholar 

  64. Zimmer ER, Parent MJ, Souza DG et al (2017) [18F]FDG PET signal is driven by astroglial glutamate transport. Nat Neurosci 20:393–395. https://doi.org/10.1038/nn.4492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bos PA, Hofman D, Hermans EJ et al (2016) Testosterone reduces functional connectivity during the “reading the mind in the eyes” test. Psychoneuroendocrinology 68:194–201. https://doi.org/10.1016/j.psyneuen.2016.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Votinov M, Wagels L, Hoffstaedter F et al (2020) Effects of exogenous testosterone application on network connectivity within emotion regulation systems. Sci Rep. https://doi.org/10.1038/s41598-020-59329-0

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian Agencies/Programs FAPERGS #1010267, FAPERGS/PPSUS#17/2551-0001, FAPERGS/PRONEX#16/2551-0000499-4, Programa de Internacionalização de Ciência FAPERGS/CAPES #19/25510000717-5, Program Science without Borders CNPQ #4011645/2012-6, and CNPq INNT #5465346/2014-6.

Funding

Fundiing was provided by FAPERGS (#1010267), FAPERGS/PPSUS (#17/2551-0001), FAPERGS/PRONEX (#16/2551-0000499-4), FAPERGS/CAPES (#19/25510000717-5) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (#4011645/2012-6, #5465346/2014-6).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Material preparation, data collection, and analysis were performed by NRS, AK, VGDeO, RBC, and MSR. Micro-PET FDG preparation, processing, and analysis were performed by GV, and SG. MAdeB performed the brain connectivity analysis. JCdaC and LVP acquired funding. The first draft of the manuscript was written by NRS, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to L. V. Portela.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strogulski, N.R., Kopczynski, A., de Oliveira, V.G. et al. Nandrolone Supplementation Promotes AMPK Activation and Divergent 18[FDG] PET Brain Connectivity in Adult and Aged Mice. Neurochem Res 47, 2032–2042 (2022). https://doi.org/10.1007/s11064-022-03592-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03592-2

Keywords

Navigation