Skip to main content
Log in

The Role of 5-HT1A Receptors and Neuronal Nitric Oxide Synthase in a Seizur Induced Kindling Model in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Background and Objective

Dentate gyrus (DG) has a high density of 5-HT1A receptors. It has neural nitric oxide synthase (nNOS), which is involved in neural excitability. The purpose of this study was to investigate the role of 5-HT1A receptors and nNOS of DG in perforant path kindling model of epilepsy.

Material and Methods

To achieve this purpose, a receptor antagonist (WAY100635, 0.1 mg/kg, intracerebroventricular, i.c.v) and neuronal nitric oxide synthase inhibitor (7-NI, 15 mg/kg, intraperitoneal, i.p.) were injected during kindling aquisition. Adult male Wistar rats (280 ± 20 g) were used in this study Animals were kindled through the daily administration of brief electrical stimulations (10 stimulations per day) to the perforant pathway. Field potential recordings were performed for 20 min in DG beforehand. Additionally, glial fibrillary acidic protein (GFAP) expression rate in the DG was determined using immunohistochemistry as a highly specific marker for glia.

Results

WAY100635 (0.1 mg/kg) significantly attenuated the kindling threshold compared to the kindled + vehicle group (P < 0.001). The co-administration of WAY100635 with 7-NI, exerted a significant anticonvulsive effect. Furthermore, the slope of field Excitatory Post Synaptic Potentials (fEPSP) at the end of 10 days in the kindled + 7-NI + WAY100635 group was significantly lower than in the kindled + vehicle group (P < 0.001). Furthermore, immunohistochemistry showed that the density of GAFP+ cells in the kindled + 7-NI + WAY100635 group was significantly higher than in the kindled + vehicle group (P < 0.001).

Conclusion

Our data demonstrate that antagonists of 5-HT1A receptors have proconvulsive effects and that astrocyte cells are involved in this process, while nNOS has an inhibitory effect on neuronal excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brady S, Siegel G, Albers RW, Price D. Basic neurochemistry: molecular, cellular and medical aspects: Elsevier; 2005.

  2. Wada Y, Nakamura M, Hasegawa H, Yamaguchi N (1993) Intra-hippocampal injection of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) inhibits partial and generalized seizures induced by kindling stimulation in cats. Neurosci Lett 159(1–2):179–182

    Article  CAS  Google Scholar 

  3. Yang Y, Guo Y, Kuang Y, Wang S, Jiang Y, Ding Y et al (2014) Serotonin 1A receptor inhibits the status epilepticus induced by lithium-pilocarpine in rats. Neurosci Bull 30(3):401–408

    Article  Google Scholar 

  4. Clinckers R, Smolders I, Meurs A, Ebinger G, Michotte Y (2004) Anticonvulsant action of hippocampal dopamine and serotonin is independently mediated by D2 and 5-HT1A receptors. J Neurochem 89(4):834–843

    Article  CAS  Google Scholar 

  5. Gariboldi M, Tutka P, Samanin R, Vezzani A (1996) Stimulation of 5-HT1A receptors in the dorsal hippocampus and inhibition of limbic seizures induced by kainic acid in rats. Br J Pharmacol 119(5):813–818

    Article  CAS  Google Scholar 

  6. Gholipour T, Ghasemi M, Riazi K, Ghaffarpour M, Dehpour AR (2010) Seizure susceptibility alteration through 5-HT3 receptor: modulation by nitric oxide. Seizure 19(1):17–22

    Article  Google Scholar 

  7. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol rev 43(2):109–142

    CAS  PubMed  Google Scholar 

  8. Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347(6295):768–770

    Article  CAS  Google Scholar 

  9. Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci 87(2):682–685

    Article  CAS  Google Scholar 

  10. Zhu X, Dong J, Shen K, Bai Y, Zhang Y, Lv X et al (2015) NMDA receptor NR2B subunits contribute to PTZ-kindling-induced hippocampal astrocytosis and oxidative stress. Brain Res Bull 114:70–78

    Article  CAS  Google Scholar 

  11. Zhu X, Dong J, Shen K, Bai Y, Chao J, Yao H (2016) Neuronal nitric oxide synthase contributes to pentylenetetrazole-kindling-induced hippocampal neurogenesis. Brain Res Bull 121:138–147

    Article  CAS  Google Scholar 

  12. Zhu X, Dong J, Han B, Huang R, Zhang A, Xia Z et al (2017) Neuronal nitric oxide synthase contributes to PTZ kindling epilepsy-induced hippocampal endoplasmic reticulum stress and oxidative damage. Front Cell Neurosci 11:377

    Article  Google Scholar 

  13. Moreno-López B, Noval JA, González-Bonet LG, Estrada C (2000) Morphological bases for a role of nitric oxide in adult neurogenesis. Brain Res 869(1–2):244–250

    Article  Google Scholar 

  14. Jiang W, Wan Q, Zhang Z-J, Wang W-D, Huang Y-G, Rao Z-R et al (2003) Dentate granule cell neurogenesis after seizures induced by pentylenetrazol in rats. Brain Res 977(2):141–148

    Article  CAS  Google Scholar 

  15. Valtschanoff JG, Weinberg RJ, Kharazia VN, Nakane M, Schmidt HH (1993) Neurons in rat hippocampus that synthesize nitric oxide. Journal of Comparative Neurology 331(1):111–121

    Article  CAS  Google Scholar 

  16. Jiang W, Xiao L, Wang J-C, Huang Y-G, Zhang X (2004) Effects of nitric oxide on dentate gyrus cell proliferation after seizures induced by pentylenetrazol in the adult rat brain. Neurosci Lett 367(3):344–348

    Article  CAS  Google Scholar 

  17. Watanabe K, Ashby CR Jr, Katsumori H, Minabe Y (2000) The effect of the acute administration of various selective 5-HT receptor antagonists on focal hippocampal seizures in freely-moving rats. Eur J Pharmacol 398(2):239–246

    Article  CAS  Google Scholar 

  18. Rüthrich H, Grecksch G, Krug M (2001) Development of long-lasting potentiation effects in the dentate gyrus during pentylenetetrazol kindling. Int J Dev Neurosci 19(3):247–254

    Article  Google Scholar 

  19. Robinson GB, Sclabassi RJ, Berger TW (1991) Kindling-induced potentiation of excitatory and inhibitory inputs to hippocampal dentate granule cells. I. Effects on linear and non-linear response characteristics. Brain Res 562(1):17–25

    Article  CAS  Google Scholar 

  20. Mohammad-Zadeh M, Mirnajafi-Zadeh J, Fathollahi Y, Javan M, Jahanshahi A, Noorbakhsh SM et al (2009) The role of adenosine A(1) receptors in mediating the inhibitory effects of low frequency stimulation of perforant path on kindling acquisition in rats. Neuroscience 158(4):1632–1643

    Article  CAS  Google Scholar 

  21. Wada Y, Nakamura M, Hasegawa H, Yamaguchi N (1993) Intra-hippocampal injection of 8-hydroxy-2 (di-n-propylamino) tetralin (8-OH-DPAT) inhibits partial and generalized seizures induced by kindling stimulation in cats. Neurosci Lett 159(1–2):179–182

    Article  CAS  Google Scholar 

  22. Pugliese AM, Passani MB, Corradetti R (1998) Effect of the selective 5-HT1A receptor antagonist WAY 100635 on the inhibition of e.p.s.ps produced by 5-HT in the CA1 region of rat hippocampal slices. Br J Pharmacol 124(1):93–100

    Article  CAS  Google Scholar 

  23. Zhu LJ, Xu C, Ren J, Chang L, Zhu XH, Sun N et al (2020) Dentate nNOS accounts for stress-induced 5-HT1A receptor deficiency: Implication in anxiety behaviors. CNS Neurosci Ther 26(4):453–464

    Article  CAS  Google Scholar 

  24. Maru E, Goddard GV (1987) Alteration in dentate neuronal activities associated with perforant path kindling: I. Long-term potentiation of excitatory synaptic transmission. Exp Neurol 96(1):19–32

    Article  CAS  Google Scholar 

  25. de Jonge M, Racine RJ (1987) The development and decay of kindling-induced increases in paired-pulse depression in the dentate gyrus. Brain Res 412(2):318–328

    Article  Google Scholar 

  26. Gilbert M (1991) Potentiation of inhibition with perforant path kindling: an NMDA-receptor dependent process. Brain Res 564(1):109–116

    Article  CAS  Google Scholar 

  27. Grote HE, Hannan AJ (2007) Regulators of adult neurogenesis in the healthy and diseased brain. Clin Exp Pharmacol Physiol 34(5–6):533–545

    Article  CAS  Google Scholar 

  28. Radley JJ, Jacobs BL (2003) Pilocarpine-induced status epilepticus increases cell proliferation in the dentate gyrus of adult rats via a 5-HT1A receptor-dependent mechanism. Brain Res 966(1):1–12

    Article  CAS  Google Scholar 

  29. Singh T, Goel RK (2016) Evidence in support of using a neurochemistry approach to identify therapy for both epilepsy and associated depression. Epilepsy Behav 61:248–257

    Article  Google Scholar 

  30. Banach M, Piskorska B, Czuczwar SJ, Borowicz K (2011) Nitric oxide, epileptic seizures, and action of antiepileptic drugs. CNS Neurol Disorders-Drug Target 10(7):808–819

    Article  CAS  Google Scholar 

  31. Han D, Yamada K, Senzaki K, Xiong H, Nawa H, Nabeshima T (2000) Involvement of nitric oxide in pentylenetetrazole-induced kindling in rats. J Neurochem 74(2):792–798

    Article  CAS  Google Scholar 

  32. Danjo S, Ishihara Y, Watanabe M, Nakamura Y, Itoh K (2013) Pentylentetrazole-induced loss of blood–brain barrier integrity involves excess nitric oxide generation by neuronal nitric oxide synthase. Brain Res 1530:44–53

    Article  CAS  Google Scholar 

  33. Itoh K, Watanabe M (2009) Paradoxical facilitation of pentylenetetrazole-induced convulsion susceptibility in mice lacking neuronal nitric oxide synthase. Neuroscience 159(2):735–743

    Article  CAS  Google Scholar 

  34. Rahmati B, Zaeri F, Heydari A (2020) Proconvulsant effects of Nepeta menthoides hydro alcoholic extract in different seizure tests: behavioral and biochemical studies. Heliyon. 6(11):05579

    Article  Google Scholar 

  35. de Lanerolle NC, Lee T-S, Spencer DD (2010) Astrocytes and epilepsy. Neurotherapeutics 7(4):424–438

    Article  Google Scholar 

  36. Hawrylak N, Chang FL, Greenough WT (1993) Astrocytic and synaptic response to kindling in hippocampal subfield CA1. II. Synaptogenesis and astrocytic process increases to in vivo kindling. Brain Res 603(2):309–316

    Article  CAS  Google Scholar 

  37. Miyazaki I, Asanuma M (2016) Serotonin 1A receptors on astrocytes as a potential target for the treatment of parkinson’s disease. Curr Med Chem 23(7):686–700

    Article  CAS  Google Scholar 

  38. Segieth J, Pearce B, Fowler L, Whitton PS (2001) Regulatory role of nitric oxide over hippocampal 5-HT release in vivo. Naunyn Schmiedebergs Arch Pharmacol 363(3):302–306

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hassan Azhdari-Zarmehri or Mohammad Mohammad-Zadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalati, Z.H., Gholami, O., Amin, B. et al. The Role of 5-HT1A Receptors and Neuronal Nitric Oxide Synthase in a Seizur Induced Kindling Model in Rats. Neurochem Res 47, 1934–1942 (2022). https://doi.org/10.1007/s11064-022-03577-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03577-1

Keywords

Navigation