Skip to main content
Log in

Omp31 of Brucella Inhibits NF-κB p65 Signaling Pathway by Inducing Autophagy in BV-2 Microglia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neurobrucellosis is a serious central nervous system (CNS) inflammatory disorder caused by Brucella, and outer membrane protein-31 (Omp31) plays an important role in Brucella infection. This study aims to determine whether Omp31 can induce autophagy in BV-2 microglia. Another goal of the study is to further examine the effect of autophagy on the nuclear transcription factor κB (NF-κB) p65 signaling pathway. We observed that Omp31 stimulated autophagy by increasing microtubule-associated protein 1 light chain 3B (LC3B-II) levels and inducing autophagosome formation at 6 h and 12 h. Concomitantly, Omp31 induced tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) expression in a time-dependent manner but reduced the expression of TNF-α at 6 h. We utilized Omp31 with or without rapamycin or 3-methyladenine (3-MA) to treat BV-2 microglia, and it demonstrated further that Omp31 induced autophagy by promoting LC3B-II, Beclin-1 proteins expression and inhibiting the p62 protein levels. Furthermore, we explored the effects of autophagy on the NF-κB p65 pathway through western blot analysis, RT-qPCR assay, enzyme-linked immunosorbent assay (ELISA) and immunofluorescence. The data suggest that Omp31 as well as rapamycin, the autophagy inducer, can decrease TNF-α levels through the inhibition of the NF-κB p65 signaling pathway. Taken together, Omp31 can function as a catalyst in both autophagy induction and NF-κB p65 signal inhibition. Furthermore, Omp31-induced autophagy may inhibit the expression of TNF-α by negatively regulating NF-κB p65 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Jiao LD, Chu CB, Kumar CJ, Cui J, Wang XL, Wu LY, Li CJ, Wang XB (2015) Clinical and laboratory findings of nonacute neurobrucellosis. Chin Med J (England) 128:1831–1833. https://doi.org/10.4103/0366-6999.159362

    Article  Google Scholar 

  2. Al-Adsani W, Ahmad A, Al-Mousa M (2018) A case of Brucella melitensis endocarditis in a patient with cardiovascular implantable electronic device. Infect Drug Resist 11:387–390. https://doi.org/10.2147/IDR.S152771

    Article  PubMed  PubMed Central  Google Scholar 

  3. Turkoglu SA, Halicioglu S, Sirmatel F, Yildiz M, Yildiz N, Yildiz S (2018) Vasculitis and neurobrucellosis: evaluation of nine cases using radiologic findings. Brain Behav 8:e00947. https://doi.org/10.1002/brb3.947

    Article  PubMed  PubMed Central  Google Scholar 

  4. Degos C, Gagnaire A, Banchereau R, Moriyón I, Gorvel JP (2015) Brucella CβG induces a dual pro-and anti-inflammatory response leading to a transient neutrophil recruitment. Virulence 6:19–28. https://doi.org/10.4161/21505594.2014.979692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zygmunt MS, Díaz MA, Teixeira-Gomes AP, Cloeckaert A (2001) Cloning, nucleotide sequence, and expression of the Brucella melitensis sucB gene coding for an immunogenic dihydrolipoamide succinyltransferase homologous protein. Infect Immun 69:6537–6540. https://doi.org/10.1128/IAI.69.10.6537-6540.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ghasemi A, Ranjbar R, Amani J (2014) In silico analysis of chimeric TF, Omp31 and BP26 fragments of Brucella melitensis for development of a multi subunit vaccine candidate. Iran J Basic Med Sci 17:172–180

    PubMed  PubMed Central  Google Scholar 

  7. Tan YQ, Zhang J, Zhou G (2017) Autophagy and its implication in human oral diseases. Autophagy 13:225–236. https://doi.org/10.1080/15548627.2016.1234563

    Article  CAS  PubMed  Google Scholar 

  8. Sharma M, Bhattacharyya S, Nain M, Kaur M, Sood V, Gupta V, Khasa R, Abdin MZ, Vrati S, Kalia M (2014) Japanese encephalitis virus replication is negatively regulated by autophagy and occurs on LC3-I- and EDEM1-containing membranes. Autophagy 10:1637–1651. https://doi.org/10.4161/auto.29455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He RN, Peng JY, Yuan PF, Xu F, Wei WS (2015) Divergent roles of BECN1 in LC3 lipidation and autophagosomal function. Autophagy 11:740–747. https://doi.org/10.1080/15548627.2015.1034404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang W, Choi W, Hu W, Mi N, Guo Q, Ma M, Liu M, Tian Y, Lu P, Wang FL, Deng H, Liu L, Gao N, Yu L, Shi Y (2012) Crystal structure and biochemical analyses reveal Beclin-1 as a novel membrane binding protein. Cell Res 22:473–489. https://doi.org/10.1038/cr.2012.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schmitz KJ, Ademi C, Bertram S, Schmid KW, Baba HA (2016) Prognostic relevance of autophagy-related markers LC3, p62/sequestosome 1, Beclin-1 and ULK1 in colorectal cancer patients with respect to KRAS mutational status. World J Surg Oncol 14:189. https://doi.org/10.1186/s12957-016-0946-x

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jeong K, Kwon HY, Jeong MS, Sohn EJ, Kim SH (2019) Correction: CNOT2 promotes degradation of p62/SQSTM1 as a negative regulator in ATG5dependent autophagy. Oncotarget 10:5571. https://doi.org/10.18632/oncotarget.27211

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li N, Liu BW, Ren WZ, Liu JX, Li SN, Fu SP, Zeng YL, Xu SY, Yan X, Gao YJ, Liu DF, Wang W (2016) GLP-2 attenuates LPS-induced inflammation in BV-2 cells by inhibiting ERK1/2, JNK1/2 and NF-κB signaling pathways. Int J Mol Sci 17:190. https://doi.org/10.3390/ijms17020190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li LY, Wu Y, Wang YP, Wu J, Song LM, Xian WJ, Yuan SY, Pei L, Shang Y (2014) Resolvin D1 promotes the interleukin-4-induced alternative activation in BV-2 microglial cells. J Neuroinflamm 11:72. https://doi.org/10.1186/1742-2094-11-72

    Article  CAS  Google Scholar 

  15. Song FJ, Zeng KW, Liao LX, Yu Q, Tu PF, Wang XM (2016) Schizandrin A inhibits microglia-mediated neuroninflammation through inhibiting TRAF6-NF-κB and Jak2-Stat3 signaling pathways. PLoS ONE 11:e0149991. https://doi.org/10.1371/journal.pone.0149991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Su YJ, Qu Y, Zhao FY, Li HF, Mu DZ, Li XH (2015) Regulation of autophagy by the nuclear factor κB signaling pathway in the hippocampus of rats with sepsis. J Neuroinflamm 12:116. https://doi.org/10.1186/s12974-015-0336-2

    Article  CAS  Google Scholar 

  17. Kanayama M, Inoue M, Danzaki K, Hammer G, He YW, Shinohara ML (2015) Autophagy enhances NFκB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity. Nat Commun 6:5779. https://doi.org/10.1038/ncomms6779

    Article  CAS  PubMed  Google Scholar 

  18. Guo SY, Liu YW, Ma R, Li J, Su BX (2016) Neuroprotective effect of endogenous cannabinoids on ischemic brain injury induced by the excess microglia-mediated inflammation. Am J Transl Res 8:2631–2640

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Djavaheri-Mergny M, Codogno P (2007) Autophagy joins the game to regulate NF-kappaB signaling pathways. Cell Res 17:576–577. https://doi.org/10.1038/cr.2007.58

    Article  CAS  PubMed  Google Scholar 

  20. Wareth G, Melzer F, Böttcher D, El-Diasty M, El-Beskawy M, Rasheed N, Schmoock G, Roesler U, Sprague LD, Neubauer H (2016) Molecular typing of isolates obtained from aborted foetuses in brucella-free holstein dairy cattle herd after immunisation with Brucella Abortus RB51 vaccine in Egypt. Acta Trop 164:267–271. https://doi.org/10.1016/j.actatropica.2016.09.019

    Article  CAS  PubMed  Google Scholar 

  21. Kang YS, Kirby JE (2019) A chemical genetics screen reveals influence of p38 mitogen-activated protein kinase and autophagy on phagosome development and intracellular replication of Brucella neotomae in macrophages. Infect Immun 87:e00044-e119. https://doi.org/10.1128/IAI.00044-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang K, Wang H, Guo F, Yuan L, Zhang WJ, Wang YZ, Chen CF (2016) OMP31 of Brucella melitensis 16M impairs the apoptosis of macrophages triggered by TNF-α. Exp Ther Med 12:2783–2789. https://doi.org/10.3892/etm.2016.3655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hop HT, Reyes AWB, Huy TXN, Arayan LT, Min W, Lee HJ, Rhee MH, Chang HH, Kim S (2017) Activation of NF-kB-mediated TNF-induced antimicrobial immunity is required for the efficient Brucella abortus clearance in raw 2647 cells. Front Cell Infect Microbiol 7:437. https://doi.org/10.3389/fcimb.2017.00437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hop HT, Huy TXN, Reyes AWB, Arayan LT, Vu SH, Min W, Lee HJ, Kang CK, Kim DH, Tark DS, Kim S (2019) Interleukin 6 promotes Brucella abortus clearance by controlling bactericidal activity of macrophages and CD8+ T cell differentiation. Infect Immun 87:e00431-e519. https://doi.org/10.1128/IAI.00431-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bussi C, Peralta Ramos JM, Arroyo DS, Gaviglio EA, Gallea JI, Wang JM, Celej MS, Iribarren P (2017) Autophagy down regulates pro-inflammatory mediators in BV2 microglial cells and rescues both LPS and alpha-synuclein induced neuronal cell death. Sci Rep 7:43153. https://doi.org/10.1038/srep43153

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shen X, Ma L, Dong W, Wu Q, Gao Y, Luo C, Zhang M, Chen X, Tao L (2016) Autophagy regulates intracerebral hemorrhage induced neural damage via apoptosis and NF-κB pathway. Neurochem Int 96:100–112. https://doi.org/10.1016/j.neuint.2016.03.004

    Article  CAS  PubMed  Google Scholar 

  27. Xiao GT (2007) Autophagy and NF-κB fight for fate. Cytokine Growth Factor Rev 18:233–243. https://doi.org/10.1016/j.cytogfr.2007.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lu PD, Zhao YH (2020) Targeting NF-κB pathway for treating ulcerative colitis: comprehensive regulatory characteristics of Chinese medicines. Chin Med 15:15. https://doi.org/10.1186/s13020-020-0296-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meng T, Lin S, Zhuang H, Huang H, He Z, Hu Y, Gong Q, Feng D (2019) Recent progress in the role of autophagy in neurological diseases. Cell Stress 3:141–161. https://doi.org/10.15698/cst2019.05.186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hamer I, Goffin E, Bolle XD, Letesson JJ, Jadot M (2014) Replication of Brucella abortus and Brucella melitensis in fibroblasts does not require Atg5-dependent macroautophagy. BMC Microbiol 14:223. https://doi.org/10.1186/s12866-014-0223-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mirnejad R, Jazi FM, Mostafaei S, Sedighi M (2017) Molecular investigation of virulence factors of Brucella melitensis and Brucella abortus strains isolated from clinical and non-clinical samples. Microb Pathog 109:8–14. https://doi.org/10.1016/j.micpath.2017.05.019

    Article  CAS  PubMed  Google Scholar 

  32. Madsen PM, Motti D, Karmally S, Szymkowski DE, Lambertsen KL, Bethea JR, Brambilla R (2016) Oligodendroglial TNFR2 mediates membrane TNF-dependent repair in experimental autoimmune encephalomyelitis by promoting oligodendrocyte differentiation and remyelination. J Neurosci 36:5128–5143. https://doi.org/10.1523/JNEUROSCI.0211-16.2016

    Article  PubMed  PubMed Central  Google Scholar 

  33. Anderson WD, Greenhalgh AD, Takwale A, David S, Vadigepalli R (2017) Novel influences of IL-10 on CNS inflammation revealed by integrated analyses of cytokine networks and microglial morphology. Front Cell Neurosci 11:233. https://doi.org/10.3389/fncel.2017.00233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Plaza-Zabala A, Sierra-Torre V, Sierra A (2017) Autophagy and microglia: novel partners in neurodegeneration and aging. Int J Mol Sci 18:598. https://doi.org/10.3390/ijms18030598

    Article  CAS  PubMed Central  Google Scholar 

  35. Zhang Y, Mun SR, Linares JF, Ahn J, Towers CG, Ji CH, Fitzwalter BE, Holden MR, Mi W, Shi X, Moscat J, Thorburn A, Diaz-Meco MT, Kwon YT, Kutateladze TG (2018) ZZ-dependent regulation of p62/SQSTM1 in autophagy. Nat Commun 9:4373. https://doi.org/10.1038/s41467-018-06878-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Perkins ND (2012) The diverse and complex roles of NF-κB subunits in cancer. Nat Rev Cancer 12:121–132. https://doi.org/10.1038/nrc3204

    Article  CAS  PubMed  Google Scholar 

  37. Pawlowska E, Szczepanska J, Wisniewski K, Tokarz P, Jaskólski DJ, Blasiak J (2018) NF-κB-mediated inflammation in the pathogenesis of intracranial aneurysm and subarachnoid hemorrhage. Does autophagy play a role? Int J Mol Sci 19:1245. https://doi.org/10.3390/ijms19041245

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 31660030), the Key Research and Development Project of Ningxia (Grant No. 2018BFG02017), Key scientific research projects of Ningxia Health and Family Planning Commission (Grant No. 2018-NW-009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Xie or Zhenhai Wang.

Ethics declarations

Conflict of interest

All authors declare no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, G., Wang, Y. et al. Omp31 of Brucella Inhibits NF-κB p65 Signaling Pathway by Inducing Autophagy in BV-2 Microglia. Neurochem Res 46, 3264–3272 (2021). https://doi.org/10.1007/s11064-021-03429-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03429-4

Keywords

Navigation