Skip to main content

Advertisement

Log in

Hippocampal Aromatase Knockdown Aggravates Ovariectomy‐Induced Spatial Memory Impairment, Aβ Accumulation and Neural Plasticity Deficiency in Adult Female Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ovarian estrogens (mainly 17β estradiol, E2) have been involved in the regulation of the structure of hippocampus, the center of spatial memory. In recent years, high levels of aromatase (AROM), the estrogen synthase, has been localized in hippocampus; and this hippocampus-derived E2 seems to be functional in synaptic plasticity and spatial memory as ovarian E2 does. However, the contribution of ovarian E2 and hippocampal E2 to spatial memory and neural plasticity remains unclear. In this study, AROM-specific RNA interference AAVs (shAROM) were constructed and injected into the hippocampus of control or ovariectomized (OVX) mice. Four weeks later the spatial learning and memory behavior was examined with Morris water maze, the expression of hippocampal Aβ related proteins, selected synaptic proteins and CA1 synapse density, actin polymerization related proteins and CA1 spine density were also examined. The results showed that while OVX and hippocampal shAROM contributed similarly to most of the parameters examined, shAROM induced more increase in BACE1 (amyloidogenic β-secretase), more decrease in neprilysin (Aβ remover) and Profilin-1 (actin polymerization inducer). More importantly, combined OVX and shAROM treatment displayed most significant impairment of spatial learning and memory as well as decrease in synaptic plasticity compared to OVX or shAROM alone. In conclusion, the above results clearly demonstrated the crucial role of hippocampal E2 in the regulation of the structure and function of hippocampus besides ovarian E2, indicating that hippocampal E2 content should also be taken into consideration during estrogenic replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Henderson VW (2014) Alzheimer’s disease: review of hormone therapy trials and implications for treatment and prevention after menopause. J Steroid Biochem Mol Biol 142:99–106

    CAS  PubMed  Google Scholar 

  2. Jaroudi W, Garami J, Garrido S, Hornberger M, Keri S, Moustafa AA (2017) Factors underlying cognitive decline in old age and Alzheimer’s disease: the role of the hippocampus. Rev Neurosci 28:705–714

    PubMed  Google Scholar 

  3. Woolley CS, Gould E, Frankfurt M, McEwen BS (1990) Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J Neurosci 10:4035–4039

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gould E, Woolley CS, Frankfurt M, McEwen BS (1990) Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J Neurosci 10:1286–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu M, Xing F, Bian C, Zhao Y, Zhao J, Liu Y, Zhang J (2019) Letrozole induces worse hippocampal synaptic and dendritic changes and spatial memory impairment than ovariectomy in adult female mice. Neurosci Lett 706:61–67

    CAS  PubMed  Google Scholar 

  6. Xiao Q, Luo Y, Lv F, He Q, Wu H, Chao F, Qiu X, Zhang L, Gao Y, Huang C, Wang S, Zhou C, Zhang Y, Jiang L, Tang Y (2018) Protective effects of 17beta-estradiol on hippocampal myelinated fibers in ovariectomized middle-aged rats. Neuroscience 385:143–153

    CAS  PubMed  Google Scholar 

  7. Lord C, Buss C, Lupien SJ, Pruessner JC (2008) Hippocampal volumes are larger in postmenopausal women using estrogen therapy compared to past users, never users and men: a possible window of opportunity effect. Neurobiol Aging 29:95–101

    CAS  PubMed  Google Scholar 

  8. Kiss A, Delattre AM, Pereira SI, Carolino RG, Szawka RE, Anselmo-Franci JA, Zanata SM, Ferraz AC (2012) 17beta-estradiol replacement in young, adult and middle-aged female ovariectomized rats promotes improvement of spatial reference memory and an antidepressant effect and alters monoamines and BDNF levels in memory- and depression-related brain areas. Behav Brain Res 227:100–108

    CAS  PubMed  Google Scholar 

  9. Iivonen S, Heikkinen T, Puolivali J, Helisalmi S, Hiltunen M, Soininen H, Tanila H (2006) Effects of estradiol on spatial learning, hippocampal cytochrome P450 19, and estrogen alpha and beta mRNA levels in ovariectomized female mice. Neuroscience 137:1143–1152

    CAS  PubMed  Google Scholar 

  10. Frick KM, Fernandez SM, Bulinski SC (2002) Estrogen replacement improves spatial reference memory and increases hippocampal synaptophysin in aged female mice. Neuroscience 115:547–558

    CAS  PubMed  Google Scholar 

  11. Zhang YY, Liu MY, Liu Z, Zhao JK, Zhao YG, He L, Li W, Zhang JQ (2019) GPR30-mediated estrogenic regulation of actin polymerization and spatial memory involves SRC-1 and PI3K-mTORC2 in the hippocampus of female mice. CNS Neurosci Ther 25:714–733

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao Y, He L, Zhang Y, Zhao J, Liu Z, Xing F, Liu M, Feng Z, Li W, Zhang J (2017) Estrogen receptor alpha and beta regulate actin polymerization and spatial memory through an SRC-1/mTORC2-dependent pathway in the hippocampus of female mice. J Steroid Biochem Mol Biol 174:96–113

    CAS  PubMed  Google Scholar 

  13. Liu F, Day M, Muniz LC, Bitran D, Arias R, Revilla-Sanchez R, Grauer S, Zhang G, Kelley C, Pulito V, Sung A, Mervis RF, Navarra R, Hirst WD, Reinhart PH, Marquis KL, Moss SJ, Pangalos MN, Brandon NJ (2008) Activation of estrogen receptor-beta regulates hippocampal synaptic plasticity and improves memory. Nat Neurosci 11:334–343

    CAS  PubMed  Google Scholar 

  14. Wang W, Le AA, Hou B, Lauterborn JC, Cox CD, Levin ER, Lynch G, Gall CM (2018) Memory-related synaptic plasticity is sexually dimorphic in rodent hippocampus. J Neurosci 38:7935–7951

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yoon BK, Chin J, Kim JW, Shin MH, Ahn S, Lee DY, Seo SW, Na DL (2018) Menopausal hormone therapy and mild cognitive impairment: a randomized, placebo-controlled trial. Menopause (New York, NY) 25:870–876

    Google Scholar 

  16. Merlo S, Spampinato SF, Sortino MA (2017) Estrogen and Alzheimer’s disease: Still an attractive topic despite disappointment from early clinical results. Eur J Pharmacol 817:51–58

    CAS  PubMed  Google Scholar 

  17. Guo H, Liu M, Zhang L, Wang L, Hou W, Ma Y, Ma Y (2020) The critical period for neuroprotection by estrogen replacement therapy and the potential underlying mechanisms. Curr Neuropharmacol 18:485–500

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yue X, Lu M, Lancaster T, Cao P, Honda S, Staufenbiel M, Harada N, Zhong Z, Shen Y, Li R (2005) Brain estrogen deficiency accelerates Abeta plaque formation in an Alzheimer’s disease animal model. Proc Natl Acad Sci USA 102:19198–19203

    CAS  PubMed  Google Scholar 

  19. Hojo Y, Hattori TA, Enami T, Furukawa A, Suzuki K, Ishii HT, Mukai H, Morrison JH, Janssen WG, Kominami S, Harada N, Kimoto T, Kawato S (2004) Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017alpha and P450 aromatase localized in neurons. Proc Natl Acad Sci USA 101:865–870

    CAS  PubMed  Google Scholar 

  20. Zhang QG, Wang R, Tang H, Dong Y, Chan A, Sareddy GR, Vadlamudi RK, Brann DW (2014) Brain-derived estrogen exerts anti-inflammatory and neuroprotective actions in the rat hippocampus. Mol Cell Endocrinol 389:84–91

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Azcoitia I, Yague JG, Garcia-Segura LM (2011) Estradiol synthesis within the human brain. Neuroscience 191:139–147

    CAS  PubMed  Google Scholar 

  22. Butler HT, Warden DR, Hogervorst E, Ragoussis J, Smith AD, Lehmann DJ (2010) Association of the aromatase gene with Alzheimer’s disease in women. Neurosci Lett 468:202–206

    CAS  PubMed  Google Scholar 

  23. Kretz O, Fester L, Wehrenberg U, Zhou L, Brauckmann S, Zhao S, Prange-Kiel J, Naumann T, Jarry H, Frotscher M, Rune GM (2004) Hippocampal synapses depend on hippocampal estrogen synthesis. J Neurosci 24:5913–5921

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Prange-Kiel J, Fester L, Zhou L, Lauke H, Carretero J, Rune GM (2006) Inhibition of hippocampal estrogen synthesis causes region-specific downregulation of synaptic protein expression in hippocampal neurons. Hippocampus 16:464–471

    CAS  PubMed  Google Scholar 

  25. Grassi S, Tozzi A, Costa C, Tantucci M, Colcelli E, Scarduzio M, Calabresi P, Pettorossi VE (2011) Neural 17beta-estradiol facilitates long-term potentiation in the hippocampal CA1 region. Neuroscience 192:67–73

    CAS  PubMed  Google Scholar 

  26. Prange-Kiel J, Fester L, Zhou L, Jarry H, Rune GM (2009) Estrus cyclicity of spinogenesis: underlying mechanisms. J Neural Transm 116:1417–1425

    CAS  PubMed  PubMed Central  Google Scholar 

  27. von Schassen C, Fester L, Prange-Kiel J, Lohse C, Huber C, Bottner M, Rune GM (2006) Oestrogen synthesis in the hippocampus: role in axon outgrowth. J Neuroendocrinol 18:847–856

    Google Scholar 

  28. Chamniansawat S, Chongthammakun S (2012) A priming role of local estrogen on exogenous estrogen-mediated synaptic plasticity and neuroprotection. Exp Mol Med 44:403–411

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Koss WA, Frick KM (2019) Activation of androgen receptors protects intact male mice from memory impairments caused by aromatase inhibition. Horm Behav 111:96–104

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tuscher JJ, Szinte JS, Starrett JR, Krentzel AA, Fortress AM, Remage-Healey L, Frick KM (2016) Inhibition of local estrogen synthesis in the hippocampus impairs hippocampal memory consolidation in ovariectomized female mice. Horm Behav 83:60–67

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bailey DJ, Ma C, Soma KK, Saldanha CJ (2013) Inhibition of hippocampal aromatization impairs spatial memory performance in a male songbird. Endocrinology 154:4707–4714

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Konkle AT, McCarthy MM (2011) Developmental time course of estradiol, testosterone, and dihydrotestosterone levels in discrete regions of male and female rat brain. Endocrinology 152:223–235

    CAS  PubMed  Google Scholar 

  33. Mukai H, Kimoto T, Hojo Y, Kawato S, Murakami G, Higo S, Hatanaka Y, Ogiue-Ikeda M (2010) Modulation of synaptic plasticity by brain estrogen in the hippocampus. Biochem Biophys Acta 1800:1030–1044

    CAS  PubMed  Google Scholar 

  34. Kato A, Hojo Y, Higo S, Komatsuzaki Y, Murakami G, Yoshino H, Uebayashi M, Kawato S (2013) Female hippocampal estrogens have a significant correlation with cyclic fluctuation of hippocampal spines. Frontiers Neural Circ 7:149

    CAS  Google Scholar 

  35. Rune GM, Lohse C, Prange-Kiel J, Fester L, Frotscher M (2006) Synaptic plasticity in the hippocampus: effects of estrogen from the gonads or hippocampus? Neurochem Res 31:145–155

    CAS  PubMed  Google Scholar 

  36. Nelson BS, Black KL, Daniel JM (2016) Circulating estradiol regulates brain-derived estradiol via actions at gnrh receptors to impact memory in ovariectomized rats. eNeuro. https://doi.org/10.1523/ENEURO.0321-16.2016

    Article  PubMed  PubMed Central  Google Scholar 

  37. Czajka-Oraniec I, Simpson ER (2010) Aromatase research and its clinical significance. Endokrynol Pol 61:126–134

    CAS  PubMed  Google Scholar 

  38. Toda K, Hayashi Y, Okada T, Morohashi K, Saibara T (2005) Expression of the estrogen-inducible EGFP gene in aromatase-null mice reveals differential tissue responses to estrogenic compounds. Mol Cell Endocrinol 229:119–126

    CAS  PubMed  Google Scholar 

  39. Murakami K, Hata S, Miki Y, Sasano H (2018) Aromatase in normal and diseased liver. Hormon Mol Biol Clin Invest. https://doi.org/10.1515/hmbci-2017-0081

    Article  Google Scholar 

  40. Scott L, Feng J, Kiss T, Needle E, Atchison K, Kawabe TT, Milici AJ, Hajos-Korcsok E, Riddell D, Hajos M (2012) Age-dependent disruption in hippocampal theta oscillation in amyloid-beta overproducing transgenic mice. Neurobiol Aging 33(1481):e1413-1423

    Google Scholar 

  41. Sogorb-Esteve A, Garcia-Ayllon MS, Gobom J, Alom J, Zetterberg H, Blennow K, Saez-Valero J (2018) Levels of ADAM10 are reduced in Alzheimer’s disease CSF. J Neuroinflammation 15:213

    PubMed  PubMed Central  Google Scholar 

  42. Cai Z, Wang C, He W, Chen Y (2018) Berberine alleviates amyloid-beta pathology in the brain of APP/PS1 transgenic mice via inhibiting beta/gamma-secretases activity and enhancing alpha-secretases. Curr Alzheimer Res 15:1045–1052

    CAS  PubMed  Google Scholar 

  43. Zhou L, Liu J, Dong D, Wei C, Wang R (2017) Dynamic alteration of neprilysin and endothelin-converting enzyme in age-dependent APPswe/PS1dE9 mouse model of Alzheimer’s disease. Am J Transl Res 9:184–196

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang W, Zhu PJ, Zhang S, Zhou H, Stoica L, Galiano M, Krnjevic K, Roman G, Costa-Mattioli M (2013) mTORC2 controls actin polymerization required for consolidation of long-term memory. Nat Neurosci 16:441–448

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Diao W, Chen W, Höger H, Pollak A, Lubec G (2008) Fluctuations of hippocampal neuronal protein levels over the estrous cycle in the rat. Neurochem Int 52:1002–1011

    CAS  PubMed  Google Scholar 

  46. Yildirim M, Mapp O, Janssen W, Yin W, Morrison J (2008) Gore AJEn. Postpubertal decrease in hippocampal dendritic spines of female rats 210:339–348

    Google Scholar 

  47. Sun T, Liu Z, Liu M, Guo Y, Sun H, Zhao J, Lan Z, Lian B, Zhang J (2019) Hippocampus-specific Rictor knockdown inhibited 17beta-estradiol induced neuronal plasticity and spatial memory improvement in ovariectomized mice. Behav Brain Res 364:50–61

    CAS  PubMed  Google Scholar 

  48. Zhao J, Bian C, Liu M, Zhao Y, Sun T, Xing F, Zhang J (2018) Orchiectomy and letrozole differentially regulate synaptic plasticity and spatial memory in a manner that is mediated by SRC-1 in the hippocampus of male mice. J Steroid Biochem Mol Biol 178:354–368

    CAS  PubMed  Google Scholar 

  49. Tian H, Ding N, Guo M, Wang S, Wang Z, Liu H, Yang J, Li Y, Ren J, Jiang J, Li Z (2019) Analysis of learning and memory ability in an alzheimer’s disease mouse model using the morris water maze. JoVE. https://doi.org/10.3791/60055

    Article  PubMed  Google Scholar 

  50. Lichtenthaler SF (2012) Alpha-secretase cleavage of the amyloid precursor protein: proteolysis regulated by signaling pathways and protein trafficking. Curr Alzheimer Res 9:165–177

    CAS  PubMed  Google Scholar 

  51. Tan JZA, Fourriere L, Wang J, Perez F, Boncompain G, Gleeson PA (2019) Distinct anterograde trafficking pathways of BACE1 and amyloid precursor protein from the TGN and the regulation of amyloid-beta production. Molecular biology of the cell:mbcE19090487

  52. Yang W, Tian ZK, Yang HX, Feng ZJ, Sun JM, Jiang H, Cheng C, Ming QL, Liu CM (2019) Fisetin improves lead-induced neuroinflammation, apoptosis and synaptic dysfunction in mice associated with the AMPK/SIRT1 and autophagy pathway. Food Chem Toxicol 134:110824

    CAS  PubMed  Google Scholar 

  53. Vallejo D, Codocedo JF, Inestrosa NC (2017) Posttranslational Modifications Regulate the Postsynaptic Localization of PSD-95. Mol Neurobiol 54:1759–1776

    CAS  PubMed  Google Scholar 

  54. Lin CH, Lee EH (2012) JNK1 inhibits GluR1 expression and GluR1-mediated calcium influx through phosphorylation and stabilization of Hes-1. J Neurosci 32:1826–1846

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chidambaram SB, Rathipriya AG, Bolla SR, Bhat A, Ray B, Mahalakshmi AM, Manivasagam T, Thenmozhi AJ, Essa MM, Guillemin GJ, Chandra R, Sakharkar MK (2019) Dendritic spines: revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 92:161–193

    CAS  PubMed  Google Scholar 

  56. Bian C, Zhu H, Zhao Y, Cai W, Zhang J (2014) Intriguing roles of hippocampus-synthesized 17beta-estradiol in the modulation of hippocampal synaptic plasticity. J Mol Neurosci 54:271–281

    CAS  PubMed  Google Scholar 

  57. Lu Y, Sareddy GR, Wang J, Wang R, Li Y, Dong Y, Zhang Q, Liu J, O’Connor JC, Xu J, Vadlamudi RK, Brann DW (2019) Neuron-derived estrogen regulates synaptic plasticity and memory. J Neurosci 39:2792–2809

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Baumgartner NE, Grissom EM, Pollard KJ, McQuillen SM, Daniel JM (2019) Neuroestrogen-dependent transcriptional activity in the brains of ERE-luciferase reporter mice following short- and long-term ovariectomy. eNeuro. https://doi.org/10.1523/ENEURO.0275-19.2019

    Article  PubMed  PubMed Central  Google Scholar 

  59. Vedder LC, Bredemann TM, McMahon LL (2014) Estradiol replacement extends the window of opportunity for hippocampal function. Neurobiol Aging 35:2183–2192

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bredemann TM, McMahon LL (2014) 17beta Estradiol increases resilience and improves hippocampal synaptic function in helpless ovariectomized rats. Psychoneuroendocrinology 42:77–88

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Anukulthanakorn K, Malaivijitnond S, Kitahashi T, Jaroenporn S, Parhar I (2013) Molecular events during the induction of neurodegeneration and memory loss in estrogen-deficient rats. Gen Comp Endocrinol 181:316–323

    CAS  PubMed  Google Scholar 

  62. Yang HQ, Sun ZK, Jiang QH, Shang Q, Xu J (2009) Effect of estrogen-depletion and 17beta-estradiol replacement therapy upon rat hippocampus beta-amyloid generation. Zhonghua yi xue za zhi 89:2658–2661

    CAS  PubMed  Google Scholar 

  63. Hou Y, Bao XQ, Wei HL, Luo Y, Liu GT (2011) Long-term deprivation of gonadal hormone accelerates brain aging in mice. Neurol Res 33:43–49

    CAS  PubMed  Google Scholar 

  64. Fukuzaki E, Takuma K, Himeno Y, Yoshida S, Funatsu Y, Kitahara Y, Mizoguchi H, Ibi D, Koike K, Inoue M, Yamada K (2008) Enhanced activity of hippocampal BACE1 in a mouse model of postmenopausal memory deficits. Neurosci Lett 433:141–145

    CAS  PubMed  Google Scholar 

  65. Jackson J, Jambrina E, Li J, Marston H, Menzies F, Phillips K, Gilmour G (2019) Targeting the synapse in Alzheimer’s disease. Frontiers Neurosci 13:735

    Google Scholar 

  66. Dominguez-Iturza N, Calvo M, Benoist M, Esteban JA, Morales M (2016) Hippocampal dendritic spines are segregated depending on their actin polymerization. Neural Plasticity 2016:2819107

    PubMed  PubMed Central  Google Scholar 

  67. Hlushchenko I, Koskinen M, Hotulainen P (2016) Dendritic spine actin dynamics in neuronal maturation and synaptic plasticity. Cytoskeleton (Hoboken) 73:435–441

    CAS  Google Scholar 

  68. Kevenaar JT, Hoogenraad CC (2015) The axonal cytoskeleton: from organization to function. Front Mol Neurosci 8:44

    PubMed  PubMed Central  Google Scholar 

  69. Bian C, Zhu K, Yang L, Lin S, Li S, Su B, Zhang J (2012) Gonadectomy differentially regulates steroid receptor coactivator-1 and synaptic proteins in the hippocampus of adult female and male C57BL/6 mice. Synapse 66:849–857

    CAS  PubMed  Google Scholar 

  70. Zhang D, Zhang J, Bian C, Deng Q (2010) Postnatal and ovariectomic regulation of postsynaptic density protein-95 in the hippocampus of female Sprague-Dawley rats. Synapse 64:875–878

    CAS  PubMed  Google Scholar 

  71. Liu M, Huangfu X, Zhao Y, Zhang D, Zhang J (2015) Steroid receptor coactivator-1 mediates letrozole induced downregulation of postsynaptic protein PSD-95 in the hippocampus of adult female rats. J Steroid Biochem Mol Biol 154:168–175

    CAS  PubMed  Google Scholar 

  72. Bayer J, Rune G, Schultz H, Tobia MJ, Mebes I, Katzler O, Sommer T (2015) The effect of estrogen synthesis inhibition on hippocampal memory. Psychoneuroendocrinology 56:213–225

    CAS  PubMed  Google Scholar 

  73. Leranth C, Hajszan T, MacLusky NJ (2004) Androgens increase spine synapse density in the CA1 hippocampal subfield of ovariectomized female rats. J Neurosci 24:495–499

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Prange-Kiel J, Rune GM (2006) Direct and indirect effects of estrogen on rat hippocampus. Neuroscience 138:765–772

    CAS  PubMed  Google Scholar 

  75. Oberlander JG, Schlinger BA, Clayton NS, Saldanha CJ (2004) Neural aromatization accelerates the acquisition of spatial memory via an influence on the songbird hippocampus. Horm Behav 45:250–258

    CAS  PubMed  Google Scholar 

  76. Rune GM, Frotscher M (2005) Neurosteroid synthesis in the hippocampus: role in synaptic plasticity. Neuroscience 136:833–842

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant from the Development and Regeneration Key Laboratory of Sichuan Province (SYS18-02), Postdoctoral Research Foundation of China (2019M653976) and Natural Science Foundation of Chongqing (cstc2019jcyj-msxmX0255).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Guo or Jiqiang Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, Z., Meng, Z., Lian, B. et al. Hippocampal Aromatase Knockdown Aggravates Ovariectomy‐Induced Spatial Memory Impairment, Aβ Accumulation and Neural Plasticity Deficiency in Adult Female Mice. Neurochem Res 46, 1188–1202 (2021). https://doi.org/10.1007/s11064-021-03258-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03258-5

Keywords

Navigation