Skip to main content

Advertisement

Log in

A Genome-Wide Analysis of the Gene Expression and Alternative Splicing Events in a Whole-Body Hypoxic Preconditioning Mouse Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Exposure to specific doses of hypoxia can trigger endogenous neuroprotective and neuroplastic mechanisms of the central nervous system. These molecular mechanisms, together referred to as hypoxic preconditioning (HPC), remain poorly understood. In the present study, we applied RNA sequencing and bioinformatics analyses to study HPC in a whole-body HPC mouse model. The preconditioned (H4) and control (H0) groups showed 605 differentially expressed genes (DEGs), of which 263 were upregulated and 342 were downregulated. Gene Ontology enrichment analysis indicated that these DEGs were enriched in several biological processes, including metabolic stress and angiogenesis. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that the FOXO and Notch signaling pathways were involved in hypoxic tolerance and protection during HPC. Furthermore, 117 differential alternative splicing events (DASEs) were identified, with exon skipping being the dominant one (48.51%). Repeated exposure to systemic hypoxia promoted skipping of exon 7 in Edrf1 and exon 9 or 13 in Lrrc45. This study expands the understanding of the endogenous protective mechanisms of HPC and the DASEs that occur during HPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AS:

Alternative splicing

A5SS:

Alternative 5′splice sites

A3SS:

Alternative 3′splice sites

DASEs:

Differentially alternative splicing events

DEGs:

Differentially expressed genes

GO:

Gene Ontology

HE:

Hematoxylin-eosin

HPC:

Hypoxic preconditioning

IR:

Intron retention

KEGG:

Kyoto Encyclopedia of Genes and Genomes

MDA:

Malondialdehyde

MXE:

Mutually exclusive exon

qRT-PCR:

Quantitative reverse transcription polymerase chain reaction

RNA-seq:

RNA sequencing

ROS:

Reactive oxygen species

SE:

Skipped exons

SOD:

Superoxide dismutase

SoHPC:

Single-organ hypoxic preconditioning

WbHPC:

Whole-body hypoxic preconditioning

References

  1. DAHL NA, BALFOUR WM (1964) Prolonged anoxic survival due to anoxia pre-exposure: brain ATP, lactate, and pyruvate. Am J Phys 207:452–456. https://doi.org/10.1152/ajplegacy.1964.207.2.452

    Article  CAS  Google Scholar 

  2. Azad P, Zhou D, Zarndt R, Haddad GG (2012) Identification of genes underlying hypoxia tolerance in Drosophila by a P-element screen. G3 (Bethesda) 10:1169–1178. https://doi.org/10.1534/g3.112.003681

    Article  CAS  Google Scholar 

  3. Chang AJ, Bargmann CI (2008) Hypoxia and the HIF-1 transcriptional pathway reorganize a neuronal circuit for oxygen-dependent behavior in Caenorhabditis elegans. Proc Natl Acad Sci U S A 105:7321–7326. https://doi.org/10.1073/pnas.0802164105

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7:437–448. https://doi.org/10.1038/nrn1927

    Article  CAS  PubMed  Google Scholar 

  5. Zhou D, Xue J, Lai JC, Schork NJ, White KP, Haddad GG (2008) Mechanisms underlying hypoxia tolerance in Drosophila melanogaster: hairy as a metabolic switch. PLoS Genet 4:e1000221. https://doi.org/10.1371/journal.pgen.1000221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yu X, Lu C, Liu H, Rao S, Cai J, Liu S, Kriegel AJ, Greene AS, Liang M, Ding X (2013) Hypoxic preconditioning with cobalt of bone marrow mesenchymal stem cells improves cell migration and enhances therapy for treatment of ischemic acute kidney injury. PLoS One 8:e62703. https://doi.org/10.1371/journal.pone.0062703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miller BA, Perez RS, Shah AR, Gonzales ER, Park TS, Gidday JM (2001) Cerebral protection by hypoxic preconditioning in a murine model of focal ischemia-reperfusion. Neuroreport 12:1663–1669. https://doi.org/10.1097/00001756-200106130-00030

    Article  CAS  PubMed  Google Scholar 

  8. Ara J, Fekete S, Frank M, Golden JA, Pleasure D, Valencia I (2011) Hypoxic-preconditioning induces neuroprotection against hypoxia-ischemia in newborn piglet brain. Neurobiol Dis 43:473–485. https://doi.org/10.1016/j.nbd.2011.04.021

    Article  CAS  PubMed  Google Scholar 

  9. Woods IG, Imam FB (2015) Transcriptome analysis of severe hypoxic stress during development in zebrafish. Genom Data 4:83–86. https://doi.org/10.1016/j.gdata.2015.07.025

    Article  Google Scholar 

  10. Lu GW, Yu S, Li RH, Cui XY, Gao CY (2005) Hypoxic preconditioning: a novel intrinsic cytoprotective strategy. Mol Neurobiol 31:255–271. https://doi.org/10.1385/MN:31:1-3:255

    Article  CAS  PubMed  Google Scholar 

  11. Shao G, Lu GW (2012) Hypoxic preconditioning in an autohypoxic animal model. Neurosci Bull 28:316–320. https://doi.org/10.1007/s12264-012-1222-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang Y, Pacary E, Fréret T, Divoux D, Petit E, Schumann-Bard P, Bernaudin M (2006) Effect of hypoxic preconditioning on brain genomic response before and following ischemia in the adult mouse: identification of potential neuroprotective candidates for stroke. Neurobiol Dis 21:18–28. https://doi.org/10.1016/j.nbd.2005.06.002

    Article  CAS  PubMed  Google Scholar 

  13. Gustavsson M, Wilson MA, Mallard C, Rousset C, Johnston MV, Hagberg H (2007) Global gene expression in the developing rat brain after hypoxic preconditioning: involvement of apoptotic mechanisms? Pediatr Res 61:444–450. https://doi.org/10.1203/pdr.0b013e3180332be4

    Article  CAS  PubMed  Google Scholar 

  14. Thiersch M, Raffelsberger W, Frigg R, Samardzija M, Wenzel A, Poch O, Grimm C (2008) Analysis of the retinal gene expression profile after hypoxic preconditioning identifies candidate genes for neuroprotection. BMC Genomics 9:73. https://doi.org/10.1186/1471-2164-9-73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheng H, Cui C, Lu S, Xia B, Li X, Xu P, Xue M (2017) Identification and analysis of hub genes and networks related to hypoxia preconditioning in mice (No 035215). Oncotarget 9:11889–11904. https://doi.org/10.18632/oncotarget.23555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Manchenkov T, Pasillas MP, Haddad GG, Imam FB (2015) Novel genes critical for hypoxic preconditioning in zebrafish are regulators of insulin and glucose metabolism. G3 (Bethesda) 5:1107–1116. https://doi.org/10.1534/g3.115.018010

    Article  CAS  PubMed Central  Google Scholar 

  17. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptiome by high-throughput sequencing. Nat Genet 40:1413–1415. https://doi.org/10.1038/ng.259

    Article  CAS  PubMed  Google Scholar 

  18. Chen K, Dai X, Wu J (2015) Alternative splicing: an important mechanism in stem cell biology. World J Stem Cells 7:1–10. https://doi.org/10.4252/wjsc.v7.i1.1

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yap K, Makeyev EV (2013) Regulation of gene expression in mammalian nervous system through alternative pre-mRNA splicing coupled with RNA quality control mechanisms. Mol Cell Neurosci 56:420–428. https://doi.org/10.1016/j.mcn.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  20. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36. https://doi.org/10.1186/gb-2013-14-4-r36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robinson MD, Mccarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  22. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360. https://doi.org/10.1038/nmeth.3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shen S, Park JW, Lu ZX, Lin L, Henry MD, Wu YN, Zhou Q, Xing Y (2014) rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-seq data. Proc Natl Acad Sci U S A 111:E5593–E5601. https://doi.org/10.1073/pnas.1419161111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Semenza GL (2012) Molecular mechanisms mediating metastasis of hypoxic breast cancer cells. Trends Mol Med 18:534–543. https://doi.org/10.1016/j.molmed.2012.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Udono T, Takahashi K, Nakayama M, Yoshinoya A, Totsune K, Murakami O, Durlu YK, Tamai M, Shibahara S (2001) Induction of adrenomedullin by hypoxia in cultured retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 42:1080–1086

    CAS  PubMed  Google Scholar 

  26. Yan L, Chaqour B (2013) Cysteine-rich protein 61 (CCN1) and connective tissue growth factor (CCN2) at the crosshairs of ocular neovascular and fibrovascular disease therapy. J Cell Commun Signal 7:253–263. https://doi.org/10.1007/s12079-013-0206-6

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zx X, Wu SY, Wei X, Yf L, Yi P, Liu Y, Jianmiao Liu JM, Liu JF (2019) Hypoxic ER stress suppresses -catenin expression andpromotes cooperation between the transcription factors XBP1 and HIF1 for cell survival. J Biol Chem 13(294):13811–13821. https://doi.org/10.1074/jbc.RA119.008353

    Article  Google Scholar 

  28. Zhang JP, Qin HY, Wang L, Liang L, Zhao XC, Cai WX, Wei YN, Wang CM, Han H (2011) Overexpression of Notch ligand Dll1 in B16 melanoma cells leads to reduced tumor growth due to attenuated vascularization. Cancer Lett 28(309):220–227. https://doi.org/10.1016/j.canlet.2011.06.008

    Article  CAS  Google Scholar 

  29. Singh NK, Hansen DE, Kundumani-Sridharan V, Rao GN (2013) Both Kdr and Flt1 play a vital role in hypoxia-induced Src-PLD1-PKCγ-cPLA2 activation and retinal neovascularization. Blood 7(121):1911–1923. https://doi.org/10.1182/blood-2012-03-419234

    Article  CAS  Google Scholar 

  30. Liu X, Cai X, Hu B, Mei ZC, Zhang DW, Yang G, Wang J, Zhang W, Xiao W (2016) Forkhead transcription factor 3a (FOXO3a) modulates hypoxia signaling via up-regulation of the von hippel-lindau Gene (VHL). J Biol Chem 2(291):25692–25705. https://doi.org/10.1074/jbc.M116.745471

    Article  CAS  Google Scholar 

  31. Tejado MA, Suarez SN, Jiménez C, Carrera AC, Landázuri MO, Peso L (2001) Hypoxia induces the activation of the phosphatidylinositol 3-kinase/Akt cell survival pathway in PC12 cells: protective role in apoptosis. J Biol Chem 22(276):22368–22374. https://doi.org/10.1074/jbc.M011688200

    Article  Google Scholar 

  32. Hausenloy DJ, Yellon DM (2006) Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res 1(70):240–253. https://doi.org/10.1016/j.cardiores.2006.01.017

    Article  CAS  Google Scholar 

  33. Chen L, Huang K, Wang R, Jiang Q, Wu Z, Liang W, Guo R, Wang L (2018) Neuroprotective effects of cerebral ischemic preconditioning in a rat middle cerebral artery occlusion model: the role of the Notch signaling pathway. Biomed Res Int 6:8168720. https://doi.org/10.1155/2018/8168720 eCollection 2018

    Article  CAS  Google Scholar 

  34. Arumugam TV, Baik S-H, Balaganapathy P, Sobey CG, Mattson MP, Job D-G (2018) Notch signaling and neuronal death in stroke. Prog Neurobiol 2018(165–167):103–116. https://doi.org/10.1016/j.pneurobio.2018.03.002

    Article  CAS  Google Scholar 

  35. Kim M, Jung K, Kim I-S (2018) TNF-α induces human neural progenitor cell survival after oxygen–glucose deprivation by activating the NF-κB pathway. Exp Mol Med 50(14). https://doi.org/10.1038/s12276-018-0033-1

  36. Han J, Li J, Ho JC, Chia GS, Kato H, Jha S, Yang H, Poellinger L, Lee KL (2017) Hypoxia is a key driver of alternative splicing in human breast cancer cells. Sci Rep 22(7):4108. https://doi.org/10.1038/s41598-017-04333-0

    Article  CAS  Google Scholar 

  37. Hamdi ED, Vasseur C, Fournier JB, Marden MC, Wajcman H, Creuza VB (2014) Role of α-globin H helix in the building of tetrameric human hemoglobin: interaction with α-hemoglobin stabilizing protein (AHSP) and heme molecule. PLoS One 9:e111395. https://doi.org/10.1371/journal.pone.0111395

    Article  CAS  Google Scholar 

  38. Pinho FO, de Albuquerque DM, Olalla Saad ST, Costa FF (2008) Reduction of AHSP synthesis in hemin-induced k562 cells and EPO-induced CD34(+) cells leads to alpha-globin precipitation, impairment of normal hemoglobin production, and increased cell death. Exp Hematol 36:265–272. https://doi.org/10.1016/j.exphem.2007.11.003

    Article  CAS  PubMed  Google Scholar 

  39. Yu Z, Mouillesseaux KP, Kushner EJ, Bautch V (2016) Tumor-derived factors and reduced p53 promote endothelial cell centrosome over-duplication. PLoS One 15(11):e0168334. https://doi.org/10.1371/journal.pone.0168334

    Article  CAS  Google Scholar 

  40. Kim P, Yang M, Yiya K, Zhao W, Zhou X (2020) ExonSkipDB: functional annotation of exon skipping event in human. Nucleic Acids Res 8(48):D896–D907. https://doi.org/10.1093/nar/gkz917

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Prof. L Cai and ZW Yan for her invaluable advice and support in the preparation of this work.

Funding

The study was carried out by the funds received by National Natural Science Foundation of China (61671256 and 62071259 to L.C., 31760247 to H.Z. and 61662055 to Y.X.). Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (NJYT-20-B05 to Y.X.), and Inner Mongolia University of Science and Technology Innovation Fund for Excellent Young Scholars (2019YQL01 to Y.X.).Natural Science Foundation of Inner Mongolia (2019MS03081 to J.L.)

Author information

Authors and Affiliations

Authors

Contributions

L Cai, ZW Yan planed the experiments and supplied the resources. J Li, TL Zhao has carried out the experiments, obtained the data and wrote the manuscript. HY Zhao, YQ Xing has helped the author with their valuable suggestions in the research work and writing the article.

Corresponding authors

Correspondence to Lu Cai or Zuwei Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhao, H., Xing, Y. et al. A Genome-Wide Analysis of the Gene Expression and Alternative Splicing Events in a Whole-Body Hypoxic Preconditioning Mouse Model. Neurochem Res 46, 1101–1111 (2021). https://doi.org/10.1007/s11064-021-03241-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03241-0

Keywords

Navigation