Skip to main content

Advertisement

Log in

Metabolomic Assays of Postmortem Brain Extracts: Pitfalls in Extrapolation of Concentrations of Glucose and Amino Acids to Metabolic Dysregulation In Vivo in Neurological Diseases

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glucose utilization is reduced in vulnerable brain regions affected by neurological disorders, especially Alzheimer’s disease (AD), but the basis for abnormal glucose homeostasis is unknown. Studies of brain-bank human tissue have made major contributions to understanding complex aspects of neurological, psychiatric, and neurodegenerative diseases, but they are not appropriate for metabolomic analysis of labile metabolites because postmortem intervals between death and tissue freezing are much too long. Recent reports of postmortem brain glucose levels led to suggestions that AD patients may be hyperglycemic and that elevated brain glucose levels along with reduced glycolytic activity reveal abnormal glucose homeostasis before clinical symptoms become manifest. These conclusions are, however, questioned because virtually all brain glucose is consumed within minutes after death, followed by progressive increases in glucose and amino acid levels, presumably due to autolytic changes. To illustrate pitfalls in use of autopsy material for metabolomic assays of labile metabolites, data from living human brain are compared with those from autopsy samples, and metabolism at the onset of postmortem ischemia is compared with calculated glycolytic enzyme activities. Postmortem glucose levels range from extremely low to unrealistically high, precluding their extrapolation to living brain. Indirect evaluation of glycolytic enzyme activities in postmortem AD brain is not valid because the glucose and amino acid concentrations used in the calculations are not stable after death, and reported values are unrealistically high. Specific recommendations are provided for non-invasive longitudinal monitoring of brain metabolism and metabolite levels in patients with neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

Ala:

Alanine

CMRglc :

Rate of glucose utilization

fMRI:

Functional magnetic resonance imaging

Glc:

Glucose

Glc-6-P:

Glucose-6-phosphate

GLUT:

Glucose transporter

Gly:

Glycine

HK:

Hexokinase

MRS:

Magnetic resonance spectroscopy

PCr:

Phosphocreatine

PFK:

Phosphofructokinase

PK:

Pyruvate kinase

Ser:

Serine

TCA:

Tricarboxylic acid

References

  1. Sokoloff L (1981) Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. J Cereb Blood Flow Metab 1:7–36

    CAS  PubMed  Google Scholar 

  2. Cohen AD, Klunk WE (2014) Early detection of Alzheimer’s disease using PiB and FDG PET. Neurobiol Dis 72:117–122

    CAS  PubMed  Google Scholar 

  3. Metter EJ, Riege WH, Kameyama M, Kuhl DE, Phelps ME (1984) Cerebral metabolic relationships for selected brain regions in Alzheimer’s, Huntington’s, and Parkinson’s diseases. J Cereb Blood Flow Metab 4:500–506

    CAS  PubMed  Google Scholar 

  4. Hyder F, Rothman DL (2017) Advances in imaging brain metabolism. Annu Rev Biomed Eng 19:485–515

    CAS  PubMed  Google Scholar 

  5. An Y, Varma VR, Varma S, Casanova R, Dammer E, Pletnikova O, Chia CW, Egan JM, Ferrucci L, Troncoso J, Levey AI, Lah J, Seyfried NT, Legido-Quigley C, O’Brien R, Thambisetty M (2018) Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimers Dement 14:318–329

    PubMed  Google Scholar 

  6. Duarte JM, Lanz B, Gruetter R (2011) Compartmentalized cerebral metabolism of [1,6-(13)C]glucose determined by in vivo (13)C NMR spectroscopy at 14.1 T. Front Neuroenerget 3:3

    CAS  Google Scholar 

  7. Gruetter R, Seaquist ER, Ugurbil K (2001) A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am J Physiol Endocrinol Metab 281:E100–E112

    CAS  PubMed  Google Scholar 

  8. Yoshino Y, Elliott KAC (1970) Incorporation of carbon atoms from glucose into free amino acids in brain under normal and altered conditions. Can J Biochem 48:228–235

    CAS  PubMed  Google Scholar 

  9. Reinstrup P, Ståhl N, Mellergård P, Uski T, Ungerstedt U, Nordström C-H (2000) Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery 47:701–710

    CAS  PubMed  Google Scholar 

  10. Prichard J, Rothman D, Novotny E, Petroff O, Kuwabara T, Avison M, Howseman A, Hanstock C, Shulman R (1991) Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci USA 88:5829–5831

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hanstock CC, Rothman DL, Prichard JW, Jue T, Shulman RG (1988) Spatially localized 1H NMR spectra of metabolites in the human brain. Proc Natl Acad Sci USA 85:1821–1825

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gruetter R, Novotny EJ, Boulware SD, Rothman DL, Mason GF, Shulman GI, Shulman RG, Tamborlane WV (1992) Direct measurement of brain glucose concentrations in humans by 13C NMR spectroscopy. Proc Natl Acad Sci USA 89:1109–1112

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gruetter R, Ugurbil K, Seaquist ER (1998) Steady-state cerebral glucose concentrations and transport in the human brain. J Neurochem 70:397–408

    CAS  PubMed  Google Scholar 

  14. Mangia S, Tkac I, Gruetter R, Van de Moortele PF, Maraviglia B, Ugurbil K (2007) Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from 1H NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab 27:1055–1063

    CAS  PubMed  Google Scholar 

  15. Bednarik P, Tkac I, Giove F, DiNuzzo M, Deelchand DK, Emir UE, Eberly LE, Mangia S (2015) Neurochemical and BOLD responses during neuronal activation measured in the human visual cortex at 7 T. J Cereb Blood Flow Metab 35:601–610

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Boumezbeur F, Petersen KF, Cline GW, Mason GF, Behar KL, Shulman GI, Rothman DL (2010) The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. J Neurosci 30:13983–13991

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Michaelis T, Merboldt KD, Bruhn H, Hanicke W, Frahm J (1993) Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology 187:219–227

    CAS  PubMed  Google Scholar 

  18. Emir UE, Raatz S, McPherson S, Hodges JS, Torkelson C, Tawfik P, White T, Terpstra M (2011) Noninvasive quantification of ascorbate and glutathione concentration in the elderly human brain. NMR Biomed 24:888–894

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Weaver KE, Richards TL, Logsdon RG, McGough EL, Minoshima S, Aylward EH, Kleinhans NM, Grabowski TJ, McCurry SM, Teri L (2015) Posterior cingulate lactate as a metabolic biomarker in amnestic mild cognitive impairment. Biomed Res Int. https://doi.org/10.1155/2015/610605

    Article  PubMed  PubMed Central  Google Scholar 

  20. Moats RA, Ernst T, Shonk TK, Ross BD (1994) Abnormal cerebral metabolite concentrations in patients with probable Alzheimer disease. Magn Reson Med 32:110–115

    CAS  PubMed  Google Scholar 

  21. Haley AP, Knight-Scott J, Simnad VI, Manning CA (2006) Increased glucose concentration in the hippocampus in early Alzheimer’s disease following oral glucose ingestion. Magn Res Imaging 24:715–720

    CAS  Google Scholar 

  22. Mullins R, Reiter D, Kapogiannis D (2018) Magnetic resonance spectroscopy reveals abnormalities of glucose metabolism in the Alzheimer’s brain. Ann Clin Transl Neurol 5:262–272

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ponten U, Ratcheson RA, Salford LG, Siesjo BK (1973) Optimal freezing conditions for cerebral metabolites in rats. J Neurochem 21:1127–1138

    CAS  PubMed  Google Scholar 

  24. Veech RL, Harris RL, Veloso D, Veech EH (1973) Freeze-blowing: a new technique for the study of brain in vivo. J Neurochem 20:183–188

    CAS  PubMed  Google Scholar 

  25. Fujii T, Hattori K, Miyakawa T, Ohashi Y, Sato H, Kunugi H (2017) Metabolic profile alterations in the postmortem brains of patients with schizophrenia using capillary electrophoresis-mass spectrometry. Schizophr Res 183:70–74

    PubMed  Google Scholar 

  26. Dean B, Thomas N, Scarr E, Udawela M (2016) Evidence for impaired glucose metabolism in the striatum, obtained postmortem, from some subjects with schizophrenia. Transl Psychiatry 6:e949

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Patassini S, Begley P, Xu J, Church SJ, Reid SJ, Kim EH, Curtis MA, Dragunow M, Waldvogel HJ, Snell RG, Unwin RD, Faull RL, Cooper GJ (2016) Metabolite mapping reveals severe widespread perturbation of multiple metabolic processes in Huntington’s disease human brain. Biochim Biophys Acta 1862:1650–1662

    CAS  PubMed  Google Scholar 

  28. Xu J, Begley P, Church SJ, Patassini S, McHarg S, Kureishy N, Hollywood KA, Waldvogel HJ, Liu H, Zhang S, Lin W, Herholz K, Turner C, Synek BJ, Curtis MA, Rivers-Auty J, Lawrence CB, Kellett KA, Hooper NM, Vardy ER, Wu D, Unwin RD, Faull RL, Dowsey AW, Cooper GJ (2016) Elevation of brain glucose and polyol-pathway intermediates with accompanying brain-copper deficiency in patients with Alzheimer’s disease: metabolic basis for dementia. Sci Rep 6:27524

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu J, Begley P, Church SJ, Patassini S, Hollywood KA, Jullig M, Curtis MA, Waldvogel HJ, Faull RL, Unwin RD, Cooper GJ (2016) Graded perturbations of metabolism in multiple regions of human brain in Alzheimer’s disease: snapshot of a pervasive metabolic disorder. Biochim Biophys Acta 1862:1084–1092

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Graham SF, Holscher C, Green BD (2014) Metabolic signatures of human Alzheimer’s disease (AD): 1H NMR analysis of the polar metabolome of post-mortem brain tissue. Metabolomics 10:744–753

    CAS  Google Scholar 

  31. Lowry OH, Passonneau JV, Hasselberger FX, Schulz DW (1964) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J Biol Chem 239:18–30

    CAS  PubMed  Google Scholar 

  32. Pulsinelli WA, Duffy TE (1983) Regional energy balance in rat brain after transient forebrain ischemia. J Neurochem 40:1500–1503

    CAS  PubMed  Google Scholar 

  33. Kerr SE, Ghantus M (1937) The carbohydrate metabolism of brain: III. On the origin of lactic acid. J Biol Chem 117:217–225

    CAS  Google Scholar 

  34. Kirsch WM, Leitner JW (1967) Glycolytic metabolites and co-factors in human cerebral cortex and white matter during complete ischemia. Brain Res 4:358–368

    CAS  PubMed  Google Scholar 

  35. Gümüş A, Gümüş B, Özer E, Yücetaş E, Yücetaş U, Düz E, Sari S, Koldaş M (2016) Evaluation of the postmortem glucose and glycogen levels in hepatic, renal, muscle, and brain tissues: is it possible to estimate postmortem interval using these parameters? J Forensic Sci 61(Suppl 1):S144–S149

    PubMed  Google Scholar 

  36. Perry TL, Hansen S, Gandham SS (1981) Postmortem changes of amino compounds in human and rat brain. J Neurochem 36:406–410

    CAS  PubMed  Google Scholar 

  37. Stan AD, Ghose S, Gao XM, Roberts RC, Lewis-Amezcua K, Hatanpaa KJ, Tamminga CA (2006) Human postmortem tissue: what quality markers matter? Brain Res 1123:1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Toulorge D, Schapira AH, Hajj R (2016) Molecular changes in the postmortem parkinsonian brain. J Neurochem 139(Suppl 1):27–58

    CAS  PubMed  Google Scholar 

  39. Jhou JF, Tai HC (2017) The study of postmortem human synaptosomes for understanding Alzheimer’s Disease and other neurological disorders: a review. Neurol Ther 6:57–68

    PubMed  PubMed Central  Google Scholar 

  40. McCullumsmith RE, Hammond JH, Shan D, Meador-Woodruff JH (2014) Postmortem brain: an underutilized substrate for studying severe mental illness. Neuropsychopharmacology 39:65–87

    PubMed  Google Scholar 

  41. Jové M, Portero-Otín M, Naudí A, Ferrer I, Pamplona R (2014) Metabolomics of human brain aging and age-related neurodegenerative diseases. J Neuropath Exp Neurol 73:640–657

    PubMed  Google Scholar 

  42. Wilkins JM, Trushina E (2018) Application of metabolomics in Alzheimer’s disease. Front Neurol 8:719

    PubMed  PubMed Central  Google Scholar 

  43. Beach TG, Adler CH, Sue LI, Serrano G, Shill HA, Walker DG, Lue L, Roher AE, Dugger BN, Maarouf C, Birdsill AC, Intorcia A, Saxon-Labelle M, Pullen J, Scroggins A, Filon J, Scott S, Hoffman B, Garcia A, Caviness JN, Hentz JG, Driver-Dunckley E, Jacobson SA, Davis KJ, Belden CM, Long KE, Malek-Ahmadi M, Powell JJ, Gale LD, Nicholson LR, Caselli RJ, Woodruff BK, Rapscak SZ, Ahern GL, Shi J, Burke AD, Reiman EM, Sabbagh MN (2015) Arizona study of aging and neurodegenerative disorders and brain and body donation program. Neuropathology 35:354–389

    PubMed  PubMed Central  Google Scholar 

  44. Birdsill AC, Walker DG, Lue L, Sue LI, Beach TG (2011) Postmortem interval effect on RNA and gene expression in human brain tissue. Cell Tissue Bank 12:311–318

    CAS  PubMed  Google Scholar 

  45. Bigl M, Bruckner MK, Arendt T, Bigl V, Eschrich K (1999) Activities of key glycolytic enzymes in the brains of patients with Alzheimer’s disease. J Neural Transm (Vienna) 106:499–511

    CAS  Google Scholar 

  46. Bigl M, Bleyl AD, Zedlick D, Arendt T, Bigl V, Eschrich K (1996) Changes of activity and isozyme pattern of phosphofructokinase in the brains of patients with Alzheimer’s disease. J Neurochem 67:1164–1171

    CAS  PubMed  Google Scholar 

  47. Kerr SE (1936) The carbohydrate metabolism of brain: 1. The determination of glycogen in nerve tissue. J Biol Chem 116:1–7

    CAS  Google Scholar 

  48. Kerr SE (1935) Studies on the phosphous compounds of brain: I. Phosphocreatine. J Biol Chem 110:625–635

    CAS  Google Scholar 

  49. Avery BF, Kerr SE, Ghantus M (1935) The lactic acid content of mammalian brain. J Biol Chem 110:637–642

    CAS  Google Scholar 

  50. Passonneau JV, Hawkins RA, Lust WD, Welsh FA (1980) Cerebral metabolism and neural function. Williams & Wilkins, Baltimore

    Google Scholar 

  51. Shestov AA, Emir UE, Kumar A, Henry PG, Seaquist ER, Öz G (2011) Simultaneous measurement of glucose transport and utilization in the human brain. Am J Physiol Endocrinol Metab 301:E1040–E1049

    CAS  PubMed  PubMed Central  Google Scholar 

  52. de Graaf RA, Pan JW, Telang F, Lee JH, Brown P, Novotny EJ, Hetherington HP, Rothman DL (2001) Differentiation of glucose transport in human brain gray and white matter. J Cereb Blood Flow Metab 21:483–492

    PubMed  Google Scholar 

  53. Holden JE, Mori K, Dienel GA, Cruz NF, Nelson T, Sokoloff L (1991) Modeling the dependence of hexose distribution volumes in brain on plasma glucose concentration: implications for estimation of the local 2-deoxyglucose lumped constant. J Cereb Blood Flow Metab 11:171–182

    CAS  PubMed  Google Scholar 

  54. Gandhi GK, Ball KK, Cruz NF, Dienel GA (2010) Hyperglycaemia and diabetes impair gap junctional communication among astrocytes. ASN Neuro 2:e00030

    PubMed  PubMed Central  Google Scholar 

  55. Jedziniak JA, Chylack LT Jr, Cheng HM, Gillis MK, Kalustian AA, Tung WH (1981) The sorbitol pathway in the human lens: aldose reductase and polyol dehydrogenase. Invest Ophthalmol Vis Sci 20:314–326

    CAS  PubMed  Google Scholar 

  56. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Boretius S, Tammer R, Michaelis T, Brockmöller J, Frahm J (2013) Halogenated volatile anesthetics alter brain metabolism as revealed by proton magnetic resonance spectroscopy of mice in vivo. NeuroImage 69:244–255

    CAS  PubMed  Google Scholar 

  58. Talan J (2017) In the pipeline-Alzheimer’s disease: new evidence for brain glucose dysregulation in Alzheimer’s disease abnormalities evident years before clinical symptoms. Neurol Today 17:7–8

    Google Scholar 

  59. Nordström CH, Nielsen TH, Jacobsen A (2013) Techniques and strategies in neurocritical care originating from southern Scandinavia. J Rehabil Med 45:710–717

    PubMed  Google Scholar 

  60. Kirsch WM, Schulz Q, Van Buskirk J, Nakane P (1972) Anaerobic energy metabolism in brain tumors. Prog Exp Tumor Res 17:163–191

    CAS  PubMed  Google Scholar 

  61. Kirsch WM, Leitner JW (1967) A comparison of the anaerobic glycolysis of human brain and glioblastoma. J Neurosurg 27:45–51

    CAS  PubMed  Google Scholar 

  62. Kirsch WM (1965) Substrates of glycolysis in intracranial tumors during complete ischemia. Cancer Res 25:432–439

    CAS  PubMed  Google Scholar 

  63. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    CAS  PubMed  Google Scholar 

  64. Sims NR, Bowen DM, Davison AN (1981) [14C]acetylcholine synthesis and [14C]carbon dioxide production from [U-14C]glucose by tissue prisms from human neocortex. Biochem J 196:867–876

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sims NR, Bowen DM, Smith CC, Flack RH, Davison AN, Snowden JS, Neary D (1980) Glucose metabolism and acetylcholine synthesis in relation to neuronal activity in Alzheimer’s disease. Lancet 1:333–336

    CAS  PubMed  Google Scholar 

  66. Sims NR, Bowen DM, Allen SJ, Smith CC, Neary D, Thomas DJ, Davison AN (1983) Presynaptic cholinergic dysfunction in patients with dementia. J Neurochem 40:503–509

    CAS  PubMed  Google Scholar 

  67. Sims NR, Bowen DM, Neary D, Davison AN (1983) Metabolic processes in Alzheimer’s disease: adenine nucleotide content and production of 14CO2 from [U-14C]glucose in vitro in human neocortex. J Neurochem 41:1329–1334

    CAS  PubMed  Google Scholar 

  68. Hyder F, Herman P, Bailey CJ, Moller A, Globinsky R, Fulbright RK, Rothman DL, Gjedde A (2016) Uniform distributions of glucose oxidation and oxygen extraction in gray matter of normal human brain: no evidence of regional differences of aerobic glycolysis. J Cereb Blood Flow Metab 36:903–916

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Swerdlow R, Marcus DL, Landman J, Kooby D, Frey W 2nd, Freedman ML (1994) Brain glucose metabolism in Alzheimer’s disease. Am J Med Sci 308:141–144

    CAS  PubMed  Google Scholar 

  70. Dienel GA, Wang RY, Cruz NF (2002) Generalized sensory stimulation of conscious rats increases labeling of oxidative pathways of glucose metabolism when the brain glucose-oxygen uptake ratio rises. J Cereb Blood Flow Metab 22:1490–1502

    CAS  PubMed  Google Scholar 

  71. Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27:1766–1791

    CAS  PubMed  Google Scholar 

  72. Gruetter R, Novotny EJ, Boulware SD, Rothman DL, Shulman RG (1996)) 1H NMR studies of glucose transport in the human brain. J Cereb Blood Flow Metab 16:427–438

    CAS  PubMed  Google Scholar 

  73. Savaki HE, Davidsen L, Smith C, Sokoloff L (1980) Measurement of free glucose turnover in brain. J Neurochem 35:495–502

    CAS  PubMed  Google Scholar 

  74. Mori K, Cruz N, Dienel G, Nelson T, Sokoloff L (1989) Direct chemical measurement of the lambda of the lumped constant of the [14C]deoxyglucose method in rat brain: effects of arterial plasma glucose level on the distribution spaces of [14C]deoxyglucose and glucose and on lambda. J Cereb Blood Flow Metab 9:304–314

    CAS  PubMed  Google Scholar 

  75. Choi IY, Lei H, Gruetter R (2002) Effect of deep pentobarbital anesthesia on neurotransmitter metabolism in vivo: on the correlation of total glucose consumption with glutamatergic action. J Cereb Blood Flow Metab 22:1343–1351

    CAS  PubMed  Google Scholar 

  76. Duarte JMN, Gruetter R (2012) Characterization of cerebral glucose dynamics in vivo with a four-state conformational model of transport at the blood–brain barrier. J Neurochem 121:396–406

    CAS  PubMed  Google Scholar 

  77. Criego AB, Tkac I, Kumar A, Thomas W, Gruetter R, Seaquist ER (2005) Brain glucose concentrations in patients with type 1 diabetes and hypoglycemia unawareness. J Neurosci Res 79:42–47

    CAS  PubMed  Google Scholar 

  78. Criego AB, Tkac I, Kumar A, Thomas W, Gruetter R, Seaquist ER (2005) Brain glucose concentrations in healthy humans subjected to recurrent hypoglycemia. J Neurosci Res 82:525–530

    CAS  PubMed  Google Scholar 

  79. Hwang JJ, Jiang L, Hamza M, Sanchez Rangel E, Dai F, Belfort-DeAguiar R, Parikh L, Koo BB, Rothman DL, Mason G, Sherwin RS (2017) Blunted rise in brain glucose levels during hyperglycemia in adults with obesity and T2DM. JCI Insight. https://doi.org/10.1172/jci.insight.95913

    Article  PubMed  PubMed Central  Google Scholar 

  80. Seaquist ER, Moheet A, Kumar A, Deelchand DK, Terpstra M, Kubisiak K, Eberly LE, Henry PG, Joers JM, Oz G (2017) Hypothalamic flucose transport in humans during experimentally induced hypoglycemia-associated autonomic failure. J Clin Endocrinol Metab 102:3571–3580

    PubMed  PubMed Central  Google Scholar 

  81. Gjedde A, Diemer NH (1983) Autoradiographic determination of regional brain glucose content. J Cereb Blood Flow Metab 3:303–310

    CAS  PubMed  Google Scholar 

  82. Nakanishi H, Cruz NF, Adachi K, Sokoloff L, Dienel GA (1996) Influence of glucose supply and demand on determination of brain glucose content with labeled methylglucose. J Cereb Blood Flow Metab 16:439–449

    CAS  PubMed  Google Scholar 

  83. Gjedde A, Wienhard K, Heiss WD, Kloster G, Diemer NH, Herholz K, Pawlik G (1985) Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. With special reference to the regional estimation of the lumped constant. J Cereb Blood Flow Metab 5:163–178

    CAS  PubMed  Google Scholar 

  84. Pfeuffer J, Tkac I, Gruetter R (2000) Extracellular-intracellular distribution of glucose and lactate in the rat brain assessed noninvasively by diffusion-weighted 1H nuclear magnetic resonance spectroscopy in vivo. J Cereb Blood Flow Metab 20:736–746

    CAS  PubMed  Google Scholar 

  85. Ashrafi G, Wu Z, Farrell RJ, Ryan TA (2017) GLUT4 mobilization supports energetic demands of active synapses. Neuron 93:606–615.e603

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ashrafi G, Ryan TA (2017) Glucose metabolism in nerve terminals. Curr Opin Neurobiol 45:156–161

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Pearson-Leary J, McNay EC (2012) Intrahippocampal administration of amyloid-beta(1–42) oligomers acutely impairs spatial working memory, insulin signaling, and hippocampal metabolism. J Alzheimers Dis 30:413–422

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Pearson-Leary J, McNay EC (2016) Novel roles for the insulin-regulated glucose transporter-4 in hippocampally dependent memory. J Neurosci 36:11851–11864

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Pearson-Leary J, Jahagirdar V, Sage J, McNay EC (2018) Insulin modulates hippocampally-mediated spatial working memory via glucose transporter-4. Behav Brain Res 338:32–39

    CAS  PubMed  Google Scholar 

  90. Lajoie I, Nugent S, Debacker C, Dyson K, Tancredi FB, Badhwar A, Belleville S, Deschaintre Y, Bellec P, Doyon J, Bocti C, Gauthier S, Arnold D, Kergoat MJ, Chertkow H, Monchi O, Hoge RD (2017) Application of calibrated fMRI in Alzheimer’s disease. Neuroimage Clin 15:348–358

    PubMed  PubMed Central  Google Scholar 

  91. Swerdlow RH (2016) Bioenergetics and metabolism: a bench to bedside perspective. J Neurochem 139(Suppl 2):126–135

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Swerdlow RH (2018) Mitochondria and mitochondrial cascades in Alzheimer’s disease. J Alzheimers Dis 62:1403–1416

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen H, Denton TT, Xu H, Calingasan N, Beal MF, Gibson GE (2016) Reductions in the mitochondrial enzyme alpha-ketoglutarate dehydrogenase complex in neurodegenerative disease - beneficial or detrimental? J Neurochem 139:823–838

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Banerjee K, Munshi S, Xu H, Frank DE, Chen HL, Chu CT, Yang J, Cho S, Kagan VE, Denton TT, Tyurina YY, Jiang JF, Gibson GE (2016) Mild mitochondrial metabolic deficits by alpha-ketoglutarate dehydrogenase inhibition cause prominent changes in intracellular autophagic signaling: potential role in the pathobiology of Alzheimer’s disease. Neurochem Int 96:32–45

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mason GF, Petersen KF, de Graaf RA, Shulman GI, Rothman DL (2007) Measurements of the anaplerotic rate in the human cerebral cortex using 13C magnetic resonance spectroscopy and [1-13C] and [2-13C] glucose. J Neurochem 100:73–86

    CAS  PubMed  Google Scholar 

  96. Patel AB, de Graaf RA, Mason GF, Rothman DL, Shulman RG, Behar KL (2005) The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci USA 102:5588–5593

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhu XH, Lu M, Chen W (2018) Quantitative imaging of brain energy metabolisms and neuroenergetics using in vivo X-nuclear (2)H, (17)O and (31)P MRS at ultra-high field. J Magn Reson 292:155–170

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhu XH, Lee BY, Chen W (2018) Functional energetic responses and individual variance of the human brain revealed by quantitative imaging of adenosine triphosphate production rates. J Cereb Blood Flow Metab 38:959–972

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Henning A (2018) Proton and multinuclear magnetic resonance spectroscopy in the human brain at ultra-high field strength: a review. Neuroimage 168:181–198

    CAS  PubMed  Google Scholar 

  100. Zhang N, Song X, Bartha R, Beyea S, D’Arcy R, Zhang Y, Rockwood K (2014) Advances in high-field magnetic resonance spectroscopy in Alzheimer’s disease. Curr Alzheimer Res 11:367–388

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Thakkar KN, Rosler L, Wijnen JP, Boer VO, Klomp DW, Cahn W, Kahn RS, Neggers SF (2017) 7T Proton magnetic resonance spectroscopy of gamma-aminobutyric acid, glutamate, and glutamine reveals altered concentrations in patients with schizophrenia and healthy siblings. Biol Psychiatry 81:525–535

    CAS  PubMed  Google Scholar 

  102. Brandt AS, Unschuld PG, Pradhan S, Lim IA, Churchill G, Harris AD, Hua J, Barker PB, Ross CA, van Zijl PC, Edden RA, Margolis RL (2016) Age-related changes in anterior cingulate cortex glutamate in schizophrenia: A (1)H MRS study at 7 T. Schizophr Res 172:101–105

    PubMed  PubMed Central  Google Scholar 

  103. Duarte JMN, Xin L (2018) Magnetic resonance spectroscopy in schizophrenia: evidence for glutamatergic dysfunction and impaired energy metabolism. Neurochem Res. https://doi.org/10.1007/s11064-11018-12521-z

    Article  PubMed  PubMed Central  Google Scholar 

  104. Mascali D, DiNuzzo M, Serra L, Mangia S, Maraviglia B, Bozzali M, Giove F (2018) Disruption of semantic network in mild Alzheimer’s disease revealed by resting-state fMRI. Neuroscience 371:38–48

    CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald A. Dienel.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dienel, G.A. Metabolomic Assays of Postmortem Brain Extracts: Pitfalls in Extrapolation of Concentrations of Glucose and Amino Acids to Metabolic Dysregulation In Vivo in Neurological Diseases. Neurochem Res 44, 2239–2260 (2019). https://doi.org/10.1007/s11064-018-2611-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2611-y

Keywords

Navigation