Skip to main content
Log in

18β-Glycyrrhetinic Acid, a Novel Naturally Derived Agent, Suppresses Prolactin Hyperactivity and Reduces Antipsychotic-Induced Hyperprolactinemia in In Vitro and In Vivo Models

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to examine the effects of 18β-glycyrrhetinic acid (GA), a novel naturally derived agent, in suppressing prolactin (PRL) hyperactivity and reducing antipsychotic-induced hyperprolactinemia (hyperPRL) and the underlying mechanisms in in vitro and in vivo models. GA treatment for 24 h inhibited PRL synthesis and secretion in MMQ cells and cultured pituitary cells in a dose-dependent fashion; but this effect was not reproduced in GH3 cells that lack the expression of functional dopamine D2 receptors. GA suppressed elevated PRL level and growth hormone, and normalized several sex hormones in a rat model of hyperPRL, produced by repeated injection of the dopamine blocker metoclopramide. GA also modulated the expression 5-HT1A and 5-HT2A receptors in both in vivo and in vitro models. These results indicate that GA is effective in suppressing PRL hyperactivity caused by the blockade of dopamine D2 receptors. This suppressive effect of GA may be related to its modulation of the serotonergic system. This study provides additional evidence in support of GA as an adjunct for the treatment of hyperPRL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GA:

18β-Glycyrrhetinic acid

PRL:

Prolactin

hyperPRL:

Hyperprolactinemia

BMT:

Bromocriptine

5-HT:

Serotonin

PRFs:

Prolactin-releasing factors

VIP:

Oxytocin and vasoactive intestinal peptide

GABA:

Forebrain γ-aminobutyric acid

TIDA:

Tuberoinfundibular dopaminergic

MCP:

Metoclopramide

E2:

Estradiol

T:

Testosterone

P:

Progesterone

FSH:

Follicle-stimulating hormone

LH:

Luteinizing hormone

GH:

Growth hormone

ELISA:

Enzyme-linked immunosorbent assays

PMSF:

Phenylmethanesulfonyl fluoride

DA:

Dopamine

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

HRP:

Horseradish peroxidase

References

  1. Bridges RS, DiBiase R, Loundes DD, Doherty PC (1985) Prolactin stimulation of maternal behavior in female rats. Science 227(4688):782–784

    Article  CAS  PubMed  Google Scholar 

  2. Bridges RS, Ronsheim PM (1990) Prolactin (PRL) regulation of maternal behavior in rats: bromocriptine treatment delays and PRL promotes the rapid onset of behavior. Endocrinology 126(2):837–848. doi:10.1210/endo-126-2-837

    Article  CAS  PubMed  Google Scholar 

  3. Halbreich U, Kahn LS (2003) Hyperprolactinemia and schizophrenia: mechanisms and clinical aspects. J Psychiatr Pract 9(5):344–353

    Article  PubMed  Google Scholar 

  4. Gala RR, Shevach EM (1994) Evidence for the release of a prolactin-like substance by mouse lymphocytes and macrophages. Proc Soc Exp Biol Med Soc Exp Biol Med 205(1):12–19

    Article  CAS  Google Scholar 

  5. Fitzgerald P, Dinan TG (2008) Prolactin and dopamine: what is the connection? review article. J Psychopharmacol 22(2 Suppl):12–19. doi:10.1177/0269216307087148

    Article  PubMed  Google Scholar 

  6. Biller BM, Luciano A, Crosignani PG, Molitch M, Olive D, Rebar R, Sanfilippo J, Webster J, Zacur H (1999) Guidelines for the diagnosis and treatment of hyperprolactinemia. J Reprod Med 44(12 Suppl):1075–1084

    CAS  PubMed  Google Scholar 

  7. Sun CL, Geng CA, Yin XJ, Huang XY, Chen JJ (2015) Natural products as antidepressants documented in Chinese patents from 1992 to 2013. J Asian Nat Prod Res 17(2):188–198. doi:10.1080/10286020.2014.985770

    Article  CAS  PubMed  Google Scholar 

  8. Wang X, Zhang H, Chen L, Shan L, Fan G, Gao X (2013) Liquorice, a unique “guide drug” of traditional Chinese medicine: a review of its role in drug interactions. J Ethnopharmacol 150(3):781–790. doi:10.1016/j.jep.2013.09.055

    Article  CAS  PubMed  Google Scholar 

  9. Hasan SK, Khan R, Ali N, Khan AQ, Rehman MU, Tahir M, Lateef A, Nafees S, Mehdi SJ, Rashid S, Shahid A, Sultana S (2015) 18-beta Glycyrrhetinic acid alleviates 2-acetylaminofluorene-induced hepatotoxicity in Wistar rats: role in hyperproliferation, inflammation and oxidative stress. Hum Exp Toxicol 34(6):628–641. doi:10.1177/0960327114554045

    Article  CAS  PubMed  Google Scholar 

  10. Wu X, Zhang L, Gurley E, Studer E, Shang J, Wang T, Wang C, Yan M, Jiang Z, Hylemon PB, Sanyal AJ, Pandak WM Jr, Zhou H (2008) Prevention of free fatty acid-induced hepatic lipotoxicity by 18beta-glycyrrhetinic acid through lysosomal and mitochondrial pathways. Hepatology 47(6):1905–1915. doi:10.1002/hep.22239

    Article  CAS  PubMed  Google Scholar 

  11. Mahmoud AM, Al Dera HS (2015) 18beta-Glycyrrhetinic acid exerts protective effects against cyclophosphamide-induced hepatotoxicity: potential role of PPARgamma and Nrf2 upregulation. Genes Nutr 10(6):41. doi:10.1007/s12263-015-0491-1

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kong SZ, Chen HM, Yu XT, Zhang X, Feng XX, Kang XH, Li WJ, Huang N, Luo H, Su ZR (2015) The protective effect of 18beta-Glycyrrhetinic acid against UV irradiation induced photoaging in mice. Exp Gerontol 61:147–155. doi:10.1016/j.exger.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  13. Wang D, Wong HK, Feng YB, Zhang ZJ (2014) 18beta-glycyrrhetinic acid induces apoptosis in pituitary adenoma cells via ROS/MAPKs-mediated pathway. J Neurooncol 116(2):221–230. doi:10.1007/s11060-013-1292-2

    Article  CAS  PubMed  Google Scholar 

  14. Wang D, Wong HK, Zhang L, McAlonan GM, Wang XM, Sze SC, Feng YB, Zhang ZJ (2012) Not only dopamine D2 receptors involved in peony-glycyrrhiza decoction, an herbal preparation against antipsychotic-associated hyperprolactinemia. Prog Neuropsychopharmacol Biol Psychiatry 39(2):332–338. doi:10.1016/j.pnpbp.2012.07.005

    Article  CAS  PubMed  Google Scholar 

  15. Jorgensen HS (2007) Studies on the neuroendocrine role of serotonin. Dan Med Bull 54(4):266–288

    CAS  PubMed  Google Scholar 

  16. Debeljuk L, Lasaga M (2006) Tachykinins and the control of prolactin secretion. Peptides 27(11):3007–3019. doi:10.1016/j.peptides.2006.07.010

    Article  CAS  PubMed  Google Scholar 

  17. Khodr CE, Clark S, Bokov AF, Richardson A, Strong R, Hurley DL, Phelps CJ (2010) Early postnatal administration of growth hormone increases tuberoinfundibular dopaminergic neuron numbers in Ames dwarf mice. Endocrinology 151(7):3277–3285. doi:10.1210/en.2009-1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oosterhof CA, El Mansari M, Blier P (2014) Acute effects of brexpiprazole on serotonin, dopamine, and norepinephrine systems: an in vivo electrophysiologic characterization. J Pharmacol Exp Ther 351(3):585–595. doi:10.1124/jpet.114.218578

    Article  PubMed  Google Scholar 

  19. Arnhold IJ, Lofrano-Porto A, Latronico AC (2009) Inactivating mutations of luteinizing hormone beta-subunit or luteinizing hormone receptor cause oligo-amenorrhea and infertility in women. Horm Res 71(2):75–82. doi:10.1159/000183895

    Article  CAS  PubMed  Google Scholar 

  20. Wang D, Wang W, Zhou Y, Wang J, Jia D, Wong HK, Zhang ZJ (2015) Studies on the regulatory effect of Peony-Glycyrrhiza Decoction on prolactin hyperactivity and underlying mechanism in hyperprolactinemia rat model. Neurosci Lett 606:60–65. doi:10.1016/j.neulet.2015.08.024

    Article  CAS  PubMed  Google Scholar 

  21. Ribeiro AB, Leite CM, Kalil B, Franci CR, Anselmo-Franci JA, Szawka RE (2015) Kisspeptin regulates tuberoinfundibular dopaminergic neurones and prolactin secretion in an oestradiol-dependent manner in male and female rats. J Neuroendocrinol 27(2):88–99. doi:10.1111/jne.12242

    Article  CAS  PubMed  Google Scholar 

  22. Nakano M, Minagawa A, Hasunuma I, Okada R, Tonon MC, Vaudry H, Yamamoto K, Kikuyama S, Machida T, Kobayashi T (2010) D2 Dopamine receptor subtype mediates the inhibitory effect of dopamine on TRH-induced prolactin release from the bullfrog pituitary. Gen Comp Endocrinol 168(2):287–292. doi:10.1016/j.ygcen.2010.05.008

    Article  CAS  PubMed  Google Scholar 

  23. Lychkovq AE, Puzikov AM (2014) Prolactin and serotonin. Vestnik Rossiiskoi akademii meditsinskikh nauk/Rossiiskaia akademiia meditsinskikh nauk 1–2:38–45

    Article  PubMed  Google Scholar 

  24. Le Tissier PR, Hodson DJ, Martin AO, Romano N, Mollard P (2015) Plasticity of the prolactin (PRL) axis: mechanisms underlying regulation of output in female mice. Adv Exp Med Biol 846:139–162. doi:10.1007/978-3-319-12114-7_6

    Article  PubMed  Google Scholar 

  25. Lacau-Mengido IM, Libertun C, Becu-Villalobos D (1996) Different serotonin receptor types participate in 5-hydroxytryptophan-induced gonadotropins and prolactin release in the female infantile rat. Neuroendocrinology 63(5):415–421

    Article  CAS  PubMed  Google Scholar 

  26. Meert TF, Melis W, Aerts N, Clincke G (1997) Antagonism of meta-chlorophenylpiperazine-induced inhibition of exploratory activity in an emergence procedure, the open field test, in rats. Behav Pharmacol 8(4):353–363

    Article  CAS  PubMed  Google Scholar 

  27. Chaiseha Y, Kang SW, Leclerc B, Kosonsiriluk S, Sartsoongnoen N, El Halawani ME (2010) Serotonin receptor subtypes influence prolactin secretion in the Turkey. Gen Comp Endocrinol 165(1):170–175. doi:10.1016/j.ygcen.2009.06.018

    Article  CAS  PubMed  Google Scholar 

  28. Bakken T, Kang SW, Kosonsiriluk S, Kuwayama T, Chaiseha Y, El Halawani ME (2014) Differential roles of hypothalamic serotonin receptor subtypes in the regulation of prolactin secretion in the turkey hen. Acta Histochem 116(1):131–137. doi:10.1016/j.acthis.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  29. Kapur S, Remington G (1996) Serotonin-dopamine interaction and its relevance to schizophrenia. Am J Psychiatry 153(4):466–476. doi:10.1176/ajp.153.4.466

    Article  CAS  PubMed  Google Scholar 

  30. Lucas G, De Deurwaerdere P, Porras G, Spampinato U (2000) Endogenous serotonin enhances the release of dopamine in the striatum only when nigro-striatal dopaminergic transmission is activated. Neuropharmacology 39(11):1984–1995

    Article  CAS  PubMed  Google Scholar 

  31. Bortolozzi A, Diaz-Mataix L, Scorza MC, Celada P, Artigas F (2005) The activation of 5-HT receptors in prefrontal cortex enhances dopaminergic activity. J Neurochem 95(6):1597–1607. doi:10.1111/j.1471-4159.2005.03485.x

    Article  CAS  PubMed  Google Scholar 

  32. Dupre KB, Eskow KL, Negron G, Bishop C (2007) The differential effects of 5-HT(1A) receptor stimulation on dopamine receptor-mediated abnormal involuntary movements and rotations in the primed hemiparkinsonian rat. Brain Res 1158:135–143. doi:10.1016/j.brainres.2007.05.005

    Article  CAS  PubMed  Google Scholar 

  33. Halbreich U, Kinon BJ, Gilmore JA, Kahn LS (2003) Elevated prolactin levels in patients with schizophrenia: mechanisms and related adverse effects. Psychoneuroendocrinology 28(Suppl 1):53–67

    Article  CAS  PubMed  Google Scholar 

  34. Sakamoto K, Wakabayashi K (1988) Inhibitory effect of glycyrrhetinic acid on testosterone production in rat gonads. Endocrinologia Japonica 35(2):333–342

    Article  CAS  PubMed  Google Scholar 

  35. Whorwood CB, Sheppard MC, Stewart PM (1993) Licorice inhibits 11 beta-hydroxysteroid dehydrogenase messenger ribonucleic acid levels and potentiates glucocorticoid hormone action. Endocrinology 132(6):2287–2292. doi:10.1210/endo.132.6.8504732

    CAS  PubMed  Google Scholar 

  36. Armanini D, Mattarello MJ, Fiore C, Bonanni G, Scaroni C, Sartorato P, Palermo M (2004) Licorice reduces serum testosterone in healthy women. Steroids 69(11–12):763–766. doi:10.1016/j.steroids.2004.09.005

    Article  CAS  PubMed  Google Scholar 

  37. Fukui M, Kitagawa Y, Nakamura N, Kadono M, Mogami S, Hirata C, Ichio N, Wada K, Hasegawa G, Yoshikawa T (2003) Association between serum testosterone concentration and carotid atherosclerosis in men with type 2 diabetes. Diabetes Care 26(6):1869–1873

    Article  CAS  PubMed  Google Scholar 

  38. Barth C, Villringer A, Sacher J (2015) Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front Neurosci 9:37. doi:10.3389/fnins.2015.00037

    Article  PubMed  PubMed Central  Google Scholar 

  39. Michopoulos V, Berga SL, Wilson ME (2011) Estradiol and progesterone modify the effects of the serotonin reuptake transporter polymorphism on serotonergic responsivity to citalopram. Exp Clin Psychopharmacol 19(6):401–408. doi:10.1037/a0025008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science foundation of P. R. China (Grant No. 81402955) and General Research Fund (GRF) of Research Grant Council of HKSAR (Grant No. 785813).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Di Wang or Zhang-Jin Zhang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 11985 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Zhang, Y., Wang, C. et al. 18β-Glycyrrhetinic Acid, a Novel Naturally Derived Agent, Suppresses Prolactin Hyperactivity and Reduces Antipsychotic-Induced Hyperprolactinemia in In Vitro and In Vivo Models. Neurochem Res 41, 2233–2242 (2016). https://doi.org/10.1007/s11064-016-1938-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1938-5

Keywords

Navigation