Skip to main content

Advertisement

Log in

Changes in Lipid Composition During Manganese-Induced Apoptosis in PC12 Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Lipid composition of membranes is fundamental to modulate signaling pathways relying on lipid metabolites and/or membrane proteins, thus resulting in the regulation of important cell processes such as apoptosis. In this case, membrane remodeling is an early event important for the activation of signaling leading to cell death and removal of apoptotic cells. In the present study, we analyzed phospholipid, cholesterol and fatty acid content during apoptosis induced by manganese in PC12 cells. Lipid analysis of whole cells and detergent-resistant membranes was carried out by HPLC/GC. Results showed that apoptosis is associated with changes in lipid composition detectable in whole cell extracts, namely cholesterol, phosphatidylserine and phosphatidylethanolamine decreases. Noteworthy, phosphatidylserine level reduction was detectable before to the detection of apoptosis, in correlation with our previous study carried out by radioactive labelling. By contrast, phosphatidylserine and phosphatidylethanolamine changes were not detected in detergent resistant membranes, which instead showed an altered composition in phosphatidylinositol, phosphatidylcholine and sphingomyelin in apoptotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1:120–129

    Article  CAS  PubMed  Google Scholar 

  2. Honig LS, Rosenberg RN (2000) Apoptosis and neurologic disease. Am J Med 108:317–330

    Article  CAS  PubMed  Google Scholar 

  3. Aschner JL, Aschner M (2005) Nutritional aspects of manganese homeostasis. Mol Asp Med 26:353–362

    Article  CAS  Google Scholar 

  4. Dobson AW, Erikson KM, Aschner M (2004) Manganese neurotoxicity. Ann NY Acad Sci 1012:115–128

    Article  CAS  PubMed  Google Scholar 

  5. Guilarte TR (2010) Manganese and Parkinson’s disease: a critical review and new findings. Environ Health Perspect 118:1071–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oubrahim H, Stadtman ER, Chock PB (2010) Mitochondria play no roles in Mn(II)-induced apoptosis in HeLa cells. Proc Natl Acad Sci USA 98:9505–9510

    Article  Google Scholar 

  7. Oubrahim H, Chock PB, Stadtman ER (2002) Manganese(II) induces apoptotic cell death in NIH3T3 cells via a caspase-12-dependent pathway. J Biol Chem 277:20135–20138

    Article  CAS  PubMed  Google Scholar 

  8. Hirata Y (2002) Manganese-induced apoptosis in PC12 cells. Neurotoxicol Teratol 24:639–653

    Article  CAS  PubMed  Google Scholar 

  9. Cai T, Yao T, Li Y, Chen Y, Du K, Chen J, Luo W (2007) Proteasome inhibition is associated with manganese-induced oxidative injury in PC12 cells. Brain Res 1185:359–365

    Article  CAS  PubMed  Google Scholar 

  10. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216

    CAS  PubMed  Google Scholar 

  12. Balasubramanian K, Mirnikjoo B, Schroit AJ (2007) Regulated externalization of phosphatidylserine at the cell surface: implications for apoptosis. J Biol Chem 282:18357–18364

    Article  CAS  PubMed  Google Scholar 

  13. Tyurina YY, Kawai K, Tyurin VA, Liu SX, Kagan VE, Fabisiak JP (2004) The plasma membrane is the site of selective phosphatidylserine oxidation during apoptosis: role of cytochrome C. Antioxid Redox Signal 6:209–225

    Article  CAS  PubMed  Google Scholar 

  14. Matsura T, Togawa A, Kai M, Nishida T, Nakada J, Ishibe Y, Kojo S, Yamamoto Y, Yamada K (2005) The presence of oxidized phosphatidylserine on Fas-mediated apoptotic cell surface. Biochim Biophys Acta 1736:181–188

    Article  CAS  PubMed  Google Scholar 

  15. Mirnikjoo B, Balasubramanian K, Schroit AJ (2009) Suicidal membrane repair regulates phosphatidylserine externalization during apoptosis. J Biol Chem 284:22512–22516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maccarrone M, Nieuwenhuizen WE, Dullens HF, Catani MV, Melino G, Veldink GA, Vliegenthart JF, Finazzo Agrò A (1996) Membrane modifications in human erythroleukemia K562 cells during induction of programmed cell death by transforming growth factor beta 1 or cisplatin. Eur J Biochem 241:297–302

    Article  CAS  PubMed  Google Scholar 

  17. Fuchs B, Schiller J, Cross MA (2007) Apoptosis-associated changes in the glycerophospholipid composition of hematopoietic progenitor cells monitored by 31P NMR spectroscopy and MALDI-TOF mass spectrometry. Chem Phys Lipids 150:229–238

    Article  CAS  PubMed  Google Scholar 

  18. Li X, Yuan YJ (2011) Lipidomic analysis of apoptotic hela cells induced by Paclitaxel. OMICS 15:655–664

    Article  CAS  PubMed  Google Scholar 

  19. George KS, Wu S (2012) Lipid raft: a floating island of death or survival. Toxicol Appl Pharmacol 259:311–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tekpli X, Holme JA, Sergent O, Lagadic-Gossmann D (2013) Role for membrane remodeling in cell death: implication for health and disease. Toxicol 304:141–157

    Article  CAS  Google Scholar 

  21. Megha London E (2004) Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J Biol Chem 279:9997–10004

    Article  CAS  PubMed  Google Scholar 

  22. Dillon SR, Mancini M, Rosen A, Schlissel MS (2000) Annexin V binds to viable B cells and colocalizes with a marker of lipid rafts upon B cell receptor activation. J Immunol 164:1322–1332

    Article  CAS  PubMed  Google Scholar 

  23. Frasch SC, Henson PM, Nagaosa K, Fessler MB, Borregaard N, Bratton DL (2004) Phospholipid flip-flop and phospholipid scramblase 1 (PLSCR1) co-localize to uropod rafts in formylated Met-Leu-Phe-stimulated neutrophils. J Biol Chem 279:17625–17633

    Article  CAS  PubMed  Google Scholar 

  24. Ishii H, Mori T, Shiratsuchi A, Nakai Y, Shimada Y, Ohno-Iwashita Y, Nakanishi Y (2005) Distinct localization of lipid rafts and externalized phosphatidylserine at the surface of apoptotic cells. Biochem Biophys Res Commun 327:94–99

    Article  CAS  PubMed  Google Scholar 

  25. Buratta S, Migliorati G, Marchetti C, Mambrini R, Riccardi C, Mozzi R (2000) Dexamethasone increases the incorporation of [3H]serine into phosphatidylserine and the activity of serine base exchange enzyme in mouse thymocytes: a possible relation between serine base exchange enzyme and apoptosis. Mol Cell Biochem 211:61–67

    Article  CAS  PubMed  Google Scholar 

  26. Buratta S, Fettucciari K, Mambrini R, Fetriconi I, Marconi P, Mozzi R (2002) Group B streptococcus (GBS) modifies macrophage phosphatidylserine metabolism during induction of apoptosis. FEBS Lett 520:68–72

    Article  CAS  PubMed  Google Scholar 

  27. Gambelunghe A, Buratta S, Ferrara G, Mozzi R, Marchetti C, Murgia N, Muzi G (2011) Phosphatidylserine metabolism in human lymphoblastic cells exposed to chromium (VI). J Occup Environ Med 53:776–781

    Article  CAS  PubMed  Google Scholar 

  28. Aussel C, Pelassy C, Breittmayer JP (1998) CD95 (Fas/APO-1) induces an increased phosphatidylserine synthesis that precedes its externalization during programmed cell death. FEBS Lett 431:195–199

    Article  CAS  PubMed  Google Scholar 

  29. Yu A, Byers DM, Ridgway ND, McMaster CR, Cook HW (2000) Preferential externalization of newly synthesized phosphatidylserine in apoptotic U937 cells is dependent on caspase-mediated pathways. Biochim Biophys Acta 1487:296–308

    Article  CAS  PubMed  Google Scholar 

  30. Chilton FH, Connell TR (1988) 1-ether-linked phosphoglycerides. Major endogenous sources of arachidonate in the human neutrophil. J Biol Chem 263:5260–5265

    CAS  PubMed  Google Scholar 

  31. Capriotti AM, Furth EE, Arrasmith ME, Laposata M (1988) Arachidonate released upon agonist stimulation preferentially originates from arachidonate most recently incorporated into nuclear membrane phospholipids. J Biol Chem 263:10029–10034

    CAS  PubMed  Google Scholar 

  32. Ferrara G, Gambelunghe A, Mozzi R, Marchetti MC, Migliorati G, Muzi G, Buratta S (2013) Phosphatidylserine metabolism modification precedes manganese-induced apoptosis and phosphatidylserine exposure in PC12 cells. Neurotoxicol 39:25–34

    Article  CAS  Google Scholar 

  33. Pike LJ, Han X, Gross RW (2005) Epidermal growth factor receptors are localized to lipid rafts that contain a balance of inner and outer leaflet lipids: a shotgun lipidomics study. J Biol Chem 280:26796–26804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Corsetto PA, Cremona A, Montorfano G, Jovenitti IE, Orsini F, Arosio P, Rizzo AM (2012) Chemical–physical changes in cell membrane microdomains of breast cancer cells after omega-3 PUFA incorporation. Cell Biochem Biophys 64:45–59

    Article  CAS  PubMed  Google Scholar 

  35. Homan R, Anderson MK (1998) Rapid separation and quantitation of combined neutral and polar lipid classes by high-performance liquid chromatography and evaporative light-scattering mass detection. J Chromatogr B Biomed Sci Appl 708:21–26

    Article  CAS  PubMed  Google Scholar 

  36. Angelbeck-Schulze M, Stahl J, Brodesser S, Rohn K, Naim H, Hewicker-Trautwein M, Kietzmann M, Bäumer W, Mischke R (2013) Comparison of three different sampling methods for canine skin lipids. Vet Dermatol 24:233–e51

    Article  PubMed  Google Scholar 

  37. Corsetto PA, Montorfano G, Zava S, Jovenitti IE, Cremona A, Berra B, Rizzo AM (2011) Effects of n-3 PUFAs on breast cancer cells through their incorporation in plasma membrane. Lipids Health Dis 10:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Traynor AE, Schubert D, Allen WR (1982) Alterations of lipid metabolism in response to nerve growth factor. J Neurochem 39:1677–1683

    Article  CAS  PubMed  Google Scholar 

  39. Denisova NA, Strain JG, Joseph JA (1997) Oxidant injury in PC12 cells—a possible model of calcium “dysregulation” in aging: II. Interactions with membrane lipids. J Neurochem 69:1259–1266

    Article  CAS  PubMed  Google Scholar 

  40. Stillwell W, Shaikh SR, Zerouga M, Siddiqui R, Wassall SR (2005) Docosahexaenoic acid affects cell signaling by altering lipid rafts. Reprod Nutr Dev 45:559–579

    Article  CAS  PubMed  Google Scholar 

  41. Chen MT, Yiin SJ, Sheu JY, Huang YL (2002) Brain lipid peroxidation and changes of trace metals in rats following chronic manganese chloride exposure. J Toxicol Environ Health A 65:305–316

    Article  CAS  PubMed  Google Scholar 

  42. Seth K, Agrawal AK, Date I, Seth PK (2002) The role of dopamine in manganese-induced oxidative injury in rat pheochromocytoma cells. Hum Exp Toxicol 21:165–170

    Article  CAS  PubMed  Google Scholar 

  43. Stredrick DL, Stokes AH, Worst TJ, Freeman WM, Johnson EA, Lash LH, Aschner M, Vrana KE (2004) Manganese-induced cytotoxicity in dopamine-producing cells. Eurotoxicol 25:543–553

    CAS  Google Scholar 

  44. Abel S, De Kock M, van Schalkwyk DJ, Swanevelder S, Kew MC, Gelderblom WC (2009) Altered lipid profile, oxidative status and hepatitis B virus interactions in human hepatocellular carcinoma. Prostaglandin Leukot Essent Fatty Acids 81:391–399

    Article  CAS  Google Scholar 

  45. Vance JE, Tasseva G (2013) Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim Biophys Acta 1831:543–554

    Article  CAS  PubMed  Google Scholar 

  46. Mozzi R, Buratta S, Goracci G (2003) Metabolism and functions of phosphatidylserine in mammalian brain. Neurochem Res 28:195–214

    Article  CAS  PubMed  Google Scholar 

  47. Mozzi R, Buratta S (2009) Brain phosphatidylserine: metabolism and functions. In: Laitha A (ed) Handbook of neurochemistry and molecular neurobiology, Neural Lipids, Springer, New York, p 39–57

    Chapter  Google Scholar 

  48. Stone SJ, Vance JE (2000) Phosphatidylserine synthase-1 and -2 are localized to mitochondria-associated membranes. J Biol Chem 275:34534–34540

    Article  CAS  PubMed  Google Scholar 

  49. Steenbergen R, Nanowski TS, Beigneux A, Kulinski A, Young SG, Vance JE (2005) Disruption of the phosphatidylserine decarboxylase gene in mice causes embryonic lethality and mitochondrial defects. J Biol Chem 280:40032–40040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen CJ, Liao SL (2002) Oxidative stress involves in astrocytic alterations induced by manganese. Exp Neurol 175:216–225

    Article  CAS  PubMed  Google Scholar 

  51. Emoto K, Toyama-Sorimachi N, Karasuyama H, Inoue K, Umeda M (1997) Exposure of phosphatidylethanolamine on the surface of apoptotic cells. Exp Cell Res 232:430–434

    Article  CAS  PubMed  Google Scholar 

  52. Zhao M (2011) Lantibiotics as probes for phosphatidylethanolamine. Amino Acids 41:1071–1079

    Article  CAS  PubMed  Google Scholar 

  53. Tekpli X, Rissel M, Huc L, Catheline D, Sergent O, Rioux V, Legrand P, Holme JA, Dimanche-Boitrel MT, Lagadic-Gossmann D (2010) Membrane remodeling, an early event in benzo[a]pyrene-induced apoptosis. Toxicol Appl Pharmacol 243:68–76

    Article  CAS  PubMed  Google Scholar 

  54. Mateos MV, Salvador GA, Giusto NM (2010) Selective localization of phosphatidylcholine-derived signaling in detergent-resistant membranes from synaptic endings. Biochim Biophys Acta 1798:624–636

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fondazione Cassa di Risparmio di Perugia Grant No. 2014.0222.02 to Prof. Carla Emiliani.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Rizzo or C. Emiliani.

Additional information

P. A. Corsetto and G. Ferrara have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corsetto, P.A., Ferrara, G., Buratta, S. et al. Changes in Lipid Composition During Manganese-Induced Apoptosis in PC12 Cells. Neurochem Res 41, 258–269 (2016). https://doi.org/10.1007/s11064-015-1785-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1785-9

Keywords

Navigation