Skip to main content

Advertisement

Log in

Electroencephalographic Characterization of Pentylenetetrazole Kindling in Rats and Modulation of Epileptiform Discharges by Nitric Oxide

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Epileptogenesis is a progressive process which culminates with spontaneous, recurrent and unpredictable epileptic seizures due to enhanced neuronal excitability. Well-characterized animal models of this process are needed to clarify its underlying molecular mechanisms, in which the role of nitric oxide has been a controversial component. We have used kindling with a sub-convulsive dose of pentylenetetrazole to objectively characterize early electroencephalographic changes during epileptogenesis. We used electroencephalographic recordings both during pentylenetetrazole (20 mg/kg) kindling for 20 days and then, 24 days later to quantify the number, duration and spectral power of epileptic discharges. The levels of nitric oxide were modulated locally in the cerebral cortex by pharmacological agents. The number of epileptiform discharges increased during the kindling protocol as well as 24 days later, revealing the induction of a self-sustaining epileptogenic process. Epileptic discharges were characterized by theta frequencies (4–10 Hz) that were associated with absence-like seizures. However, during kindling, the spectral power of the theta band progressively decreased, while the power of higher frequencies, in the beta band, increased. Nitric oxide in the cerebral cortex inhibited the number and amplitude of epileptic discharges. The electroencephalographic characterization of this kindling protocol provides a valuable tool to detect consequences of therapeutic interventions undertaken at initial phases of epileptogenesis, especially those targeted towards stopping this process. Increases of nitric oxide in the cerebral cortex could be a useful intervention to negatively modulate neuronal excitability, epileptic discharges and the progression of epileptogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Duncan JS, Sander JW, Sisodiya SM, Walker MC (2006) Adult epilepsy. Lancet 367:1087–1100

    Article  PubMed  Google Scholar 

  2. Engel J, Williamson P, Wieser HG (2008) Mesial temporal lobe epilepsy with hippocampal sclerosis. In: Engel J, Pedley TA (eds) Epilepsy: a comprehensive textbook, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, pp 2479–2486

    Google Scholar 

  3. Jefferys JG (2003) Models and mechanisms of experimental epilepsies. Epilepsia 44(Suppl 12):44–50

    Article  PubMed  Google Scholar 

  4. Bertram E (2007) The relevance of kindling for human epilepsy. Epilepsia 48(Suppl 2):65–74

    Article  PubMed  Google Scholar 

  5. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294

    Article  CAS  PubMed  Google Scholar 

  6. Huang RQ, Bell-Horner CL, Dibas MI, Covey DF, Drewe JA, Dillon GH (2001) Pentylenetetrazole-induced inhibition of recombinant gamma-aminobutyric acid type A (GABA(A)) receptors: mechanism and site of action. J Pharmacol Exp Ther 298:986–995

    CAS  PubMed  Google Scholar 

  7. Szyndler J, Maciejak P, Turzynska D, Sobolewska A, Taracha E, Skorzewska A, Lehner M, Bidzinski A, Hamed A, Wislowska-Stanek A, Krzascik P, Plaznik A (2009) Mapping of c-Fos expression in the rat brain during the evolution of pentylenetetrazol-kindled seizures. Epilepsy Behav 16:216–224

    Article  PubMed  Google Scholar 

  8. Luttjohann A, Fabene PF, van Luijtelaar G (2009) A revised Racine’s scale for PTZ-induced seizures in rats. Physiol Behav 98:579–586

    Article  PubMed  Google Scholar 

  9. McNamara JO, Huang YZ, Leonard AS (2006) Molecular signaling mechanisms underlying epileptogenesis. Science’s STKE: signal transduction knowledge environment 2006:re12

  10. Waxman EA, Lynch DR (2005) N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscientist 11:37–49

    Article  CAS  PubMed  Google Scholar 

  11. Chuang YC, Chen SD, Lin TK, Liou CW, Chang WN, Chan SH, Chang AY (2007) Upregulation of nitric oxide synthase II contributes to apoptotic cell death in the hippocampal CA3 subfield via a cytochrome c/caspase-3 signaling cascade following induction of experimental temporal lobe status epilepticus in the rat. Neuropharmacology 52:1263–1273

    Article  CAS  PubMed  Google Scholar 

  12. Kovacs R, Rabanus A, Otahal J, Patzak A, Kardos J, Albus K, Heinemann U, Kann O (2009) Endogenous nitric oxide is a key promoting factor for initiation of seizure-like events in hippocampal and entorhinal cortex slices. J Neurosci 29:8565–8577

    Article  CAS  PubMed  Google Scholar 

  13. Jelenkovic A, Jovanovic M, Ninkovic M, Maksimovic M, Bokonjic D, Boskovic B (2002) Nitric oxide (NO) and convulsions induced by pentylenetetrazol. Ann N Y Acad Sci 962:296–305

    Article  CAS  PubMed  Google Scholar 

  14. Itoh K, Watanabe M (2009) Paradoxical facilitation of pentylenetetrazole-induced convulsion susceptibility in mice lacking neuronal nitric oxide synthase. Neuroscience 159:735–743

    Article  CAS  PubMed  Google Scholar 

  15. Marangoz AH, Yildirim M, Ayyildiz M, Marangoz C (2012) The interactions of nitric oxide and acetylcholine on penicillin-induced epilepsy in rats. Neurochem Res 37:1465–1474

    Article  CAS  PubMed  Google Scholar 

  16. Sandoval R, Gonzalez A, Caviedes A, Pancetti F, Smalla KH, Kaehne T, Michea L, Gundelfinger ED, Wyneken U (2011) Homeostatic NMDA receptor down-regulation via brain derived neurotrophic factor and nitric oxide-dependent signalling in cortical but not in hippocampal neurons. J Neurochem 118:760–772

    Article  CAS  PubMed  Google Scholar 

  17. Ocampo-Garces A, Ibanez F, Perdomo G, Torrealba F (2011) Orexin-B-saporin lesions in the lateral hypothalamus enhance photic masking of rapid eye movement sleep in the albino rat. J Sleep Res 20:3–11

    Article  PubMed  Google Scholar 

  18. Esplin DW, Woodbury DM (1956) The fate and excretion of C14-labeled pentylenetetrazol in the rat, with comments on analytical methods for pentylenetetrazol. J Pharmacol Exp Ther 118:129–138

    CAS  PubMed  Google Scholar 

  19. Ramzan IM, Levy G (1985) Kinetics of drug action in disease states. XV: effect of pregnancy on the convulsive activity of pentylenetetrazol in rats. J Pharm Sci 74:1233–1235

    Article  CAS  PubMed  Google Scholar 

  20. Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    Article  CAS  PubMed  Google Scholar 

  21. Snead OC 3rd (1992) Pharmacological models of generalized absence seizures in rodents. J Neural Transm Suppl 35:7–19

    PubMed  Google Scholar 

  22. Mortazavi F, Ericson M, Story D, Hulce VD, Dunbar GL (2005) Spatial learning deficits and emotional impairments in pentylenetetrazole-kindled rats. Epilepsy Behav 7:629–638

    Article  PubMed  Google Scholar 

  23. Erbayat-Altay E, Yamada KA, Wong M, Thio LL (2008) Increased severity of pentylenetetrazol induced seizures in leptin deficient ob/ob mice. Neurosci Lett 433:82–86

    Article  CAS  PubMed  Google Scholar 

  24. Andre V, Pineau N, Motte JE, Marescaux C, Nehlig A (1998) Mapping of neuronal networks underlying generalized seizures induced by increasing doses of pentylenetetrazol in the immature and adult rat: a c-Fos immunohistochemical study. Eur J Neurosci 10:2094–2106

    Article  CAS  PubMed  Google Scholar 

  25. Brevard ME, Kulkarni P, King JA, Ferris CF (2006) Imaging the neural substrates involved in the genesis of pentylenetetrazol-induced seizures. Epilepsia 47:745–754

    Article  PubMed  Google Scholar 

  26. Miller JW (1992) The role of mesencephalic and thalamic arousal systems in experimental seizures. Prog Neurobiol 39:155–178

    Article  CAS  PubMed  Google Scholar 

  27. Schilling M, Wetzel W, Grecksch G, Becker A (2006) Pentylenetetrazole kindling affects sleep in rats. Epilepsia 47:2075–2082

    Article  CAS  PubMed  Google Scholar 

  28. Hirase H, Qian L, Bartho P, Buzsaki G (2004) Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol 2:E96

    Article  PubMed Central  PubMed  Google Scholar 

  29. Wilczynski GM, Konopacki FA, Wilczek E, Lasiecka Z, Gorlewicz A, Michaluk P, Wawrzyniak M, Malinowska M, Okulski P, Kolodziej LR, Konopka W, Duniec K, Mioduszewska B, Nikolaev E, Walczak A, Owczarek D, Gorecki DC, Zuschratter W, Ottersen OP, Kaczmarek L (2008) Important role of matrix metalloproteinase 9 in epileptogenesis. J Cell Biol 180:1021–1035

    Article  CAS  PubMed  Google Scholar 

  30. Szyndler J, Maciejak P, Wislowska-Stanek A, Lehner M, Plaznik A (2013) Changes in the Egr1 and Arc expression in brain structures of pentylenetetrazole-kindled rats. Pharmacol Rep PR65:368–378

    Google Scholar 

  31. Stafstrom CE, Ockuly JC, Murphree L, Valley MT, Roopra A, Sutula TP (2009) Anticonvulsant and antiepileptic actions of 2-deoxy-D-glucose in epilepsy models. Ann Neurol 65:435–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Nasir SA, Sharma A, Khanam R, Vohora D (2012) Effect of medroxyprogesterone on development of pentylenetetrazole-induced kindling in mice. Neuroscience 207:283–287

    Article  CAS  PubMed  Google Scholar 

  33. Park JH, Cho H, Kim H, Kim K (2006) Repeated brief epileptic seizures by pentylenetetrazole cause neurodegeneration and promote neurogenesis in discrete brain regions of freely moving adult rats. Neuroscience 140:673–684

    Article  CAS  PubMed  Google Scholar 

  34. Kumar A, Lalitha S, Mishra J (2013) Possible nitric oxide mechanism in the protective effect of hesperidin against pentylenetetrazole (PTZ)-induced kindling and associated cognitive dysfunction in mice. Epilepsy Behav 29:103–111

    Article  PubMed  Google Scholar 

  35. Han D, Yamada K, Senzaki K, Xiong H, Nawa H, Nabeshima T (2000) Involvement of nitric oxide in pentylenetetrazole-induced kindling in rats. J Neurochem 74:792–798

    Article  CAS  PubMed  Google Scholar 

  36. Akula KK, Dhir A, Kulkarni SK (2008) Nitric oxide signaling pathway in the anti-convulsant effect of adenosine against pentylenetetrazol-induced seizure threshold in mice. Eur J Pharmacol 587:129–134

    Article  CAS  PubMed  Google Scholar 

  37. Beamer E, Otahal J, Sills GJ, Thippeswamy T (2012) N (w)-propyl-L-arginine (L-NPA) reduces status epilepticus and early epileptogenic events in a mouse model of epilepsy: behavioural, EEG and immunohistochemical analyses. Eur J Neurosci 36:3194–3203

    Article  PubMed  Google Scholar 

  38. Yin XH, Yan JZ, Hou XY, Wu SL, Zhang GY (2013) Neuroprotection of S-nitrosoglutathione against ischemic injury by down-regulating Fas S-nitrosylation and downstream signaling. Neuroscience 248C:290–298

    Article  PubMed  Google Scholar 

  39. Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775

    Article  CAS  PubMed  Google Scholar 

  40. Garthwaite J (2008) Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 27:2783–2802

    Article  PubMed Central  PubMed  Google Scholar 

  41. Foster MW, McMahon TJ, Stamler JS (2003) S-nitrosylation in health and disease. Trends Mol Med 9:160–168

    Article  CAS  PubMed  Google Scholar 

  42. Takahashi H, Shin Y, Cho SJ, Zago WM, Nakamura T, Gu Z, Ma Y, Furukawa H, Liddington R, Zhang D, Tong G, Chen HS, Lipton SA (2007) Hypoxia enhances S-nitrosylation-mediated NMDA receptor inhibition via a thiol oxygen sensor motif. Neuron 53:53–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Tian J, Kim SF, Hester L, Snyder SH (2008) S-nitrosylation/activation of COX-2 mediates NMDA neurotoxicity. Proc Natl Acad Sci USA 105:10537–10540

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by Grants to U.W. from Comisión Nacional de Ciencia y Tecnología Conicyt, (Fondecyt Program, #1100322), to A.O. (Fondecyt Program #1100245), and V.B. (Doctoral Fellowship D-21070634).

Conflict of interest

None of the authors has any conflict of interest, financial or otherwise, to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Wyneken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartsch, V., Díaz, J., González, I. et al. Electroencephalographic Characterization of Pentylenetetrazole Kindling in Rats and Modulation of Epileptiform Discharges by Nitric Oxide. Neurochem Res 39, 408–418 (2014). https://doi.org/10.1007/s11064-014-1237-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1237-y

Keywords

Navigation