Skip to main content
Log in

Age-Dependent Effects of Prenatal Stress on the Corticolimbic Dopaminergic System Development in the Rat Male Offspring

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We have previously demonstrated that prenatal stress (PS) exerts an impairment of midbrain dopaminergic (DA) system metabolism especially after puberty, suggesting a particular sensitivity of DA development to variations in gonadal hormonal peaks. Furthermore we demonstrated that PS alters the long term androgens profile of the rat male offspring from prepubertal to adult stages. In this work we evaluated the sexual hormones activational effects on the DA system by analysing PS effects on the dopaminergic D2-like (D2R) and on the gonadal hormones receptor levels on cortical and hippocampal areas of prepubertal and adult male offspring. We further evaluated the dendritic arborization in the same areas by quantifying MAP2 immunoexpresion. Our results show that PS affected oestrogen receptor alpha (ERα) expression: mRNA er1s and ERα protein levels were decreased on prefrontal cortex and hippocampus of adult offspring. Moreover, PS reduced D2R protein levels in hippocampus of prepubertal rats. Morphological studies revealed that prepubertal PS rats presented decreased MAP2 immunoexpression in both areas suggesting that PS reduces the number of dendritic arborizations. Our findings suggest that PS exerts long-term effects on the DA system by altering the normal connectivity in the areas, and by modulating the expression of D2R and ERα in an age-related pattern. Since the developing forebrain DA system was shown to be influenced by androgen exposure, and PS was shown to disrupt perinatal testosterone surges, our results suggest that prenatal insults might be affecting the organizational role of androgens and differentially modulating their activational role on the DA development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Weinstock M (2001) Alterations induced by gestational stress in brain morphology and behaviour of the offspring. Prog Neurobiol 65(5):427–451

    Article  PubMed  CAS  Google Scholar 

  2. Mastorci F, Vicentini M, Viltart O, Manghi M, Graiani G, Quaini F, Meerlo P, Nalivaiko E, Maccari S, Sgoifo A (2009) Long-term effects of prenatal stress: changes in adult cardiovascular regulation and sensitivity to stress. Neurosci Biobehav Rev 33(2):191–203. doi:10.1016/j.neubiorev.2008.08.001

    Article  PubMed  Google Scholar 

  3. Weinstock M (2008) The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev 32(6):1073–1086

    Article  PubMed  CAS  Google Scholar 

  4. Huizink AC, Mulder EJ, Buitelaar JK (2004) Prenatal stress and risk for psychopathology: specific effects or induction of general susceptibility? Psychol Bull 130(1):115–142

    Article  PubMed  Google Scholar 

  5. Darnaudery M, Maccari S (2008) Epigenetic programming of the stress response in male and female rats by prenatal restraint stress. Brain Res Rev 57(2):571–585

    Article  PubMed  CAS  Google Scholar 

  6. Biederman J (2005) Attention-deficit/hyperactivity disorder: a selective overview. Biol Psychiatry 57(11):1215–1220. doi:10.1016/j.biopsych.2004.10.020

    Article  PubMed  Google Scholar 

  7. Baier CJ, Katunar MR, Adrover E, Pallares ME, Antonelli MC (2012) Gestational restraint stress and the developing dopaminergic system: an overview. Neurotox Res. doi:10.1007/s12640-011-9305-4

    PubMed  Google Scholar 

  8. Henry C, Guegant G, Cador M, Arnauld E, Arsaut J, Le Moal M, Demotes-Mainard J (1995) Prenatal stress in rats facilitates amphetamine-induced sensitization and induces long-lasting changes in dopamine receptors in the nucleus accumbens. Brain Res 685(1–2):179–186

    Article  PubMed  CAS  Google Scholar 

  9. Diaz R, Fuxe K, Ogren SO (1997) Prenatal corticosterone treatment induces long-term changes in spontaneous and apomorphine-mediated motor activity in male and female rats. Neuroscience 81(1):129–140

    Article  PubMed  CAS  Google Scholar 

  10. Silvagni A, Barros VG, Mura C, Antonelli MC, Carboni E (2008) Prenatal restraint stress differentially modifies basal and stimulated dopamine and noradrenaline release in the nucleus accumbens shell: an ‘in vivo’ microdialysis study in adolescent and young adult rats. Eur J Neurosci 28(4):744–758. doi:10.1111/j.1460-9568.2008.06364.x

    Article  PubMed  Google Scholar 

  11. Carboni E, Barros VG, Ibba M, Silvagni A, Mura C, Antonelli MC (2010) Prenatal restraint stress: an in vivo microdialysis study on catecholamine release in the rat prefrontal cortex. Neuroscience 168(1):156–166. doi:10.1016/j.neuroscience.2010.03.046

    Article  PubMed  CAS  Google Scholar 

  12. Katunar M, Saez T, Brusco A, Antonelli M (2010) Ontogenetic expression of dopamine-related transcription factors and tyrosine hydroxylase in prenatally stressed rats. Neurotox Res 18(1):69–81

    Article  PubMed  Google Scholar 

  13. Nussey S, Whitehead S (2001) Endocrinology, an integrated approach. Oxford Bios Scientific Pulishers, Oxford

    Book  Google Scholar 

  14. MacLusky NJ, Hajszan T, Prange-Kiel J, Leranth C (2006) Androgen modulation of hippocampal synaptic plasticity. Neuroscience 138(3):957–965. doi:10.1016/j.neuroscience.2005.12.054

    Article  PubMed  CAS  Google Scholar 

  15. Sato SM, Schulz KM, Sisk CL, Wood RI (2008) Adolescents and androgens, receptors and rewards. Horm Behav 53(5):647–658. doi:10.1016/j.yhbeh.2008.01.010

    Article  PubMed  CAS  Google Scholar 

  16. Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24(4):417–463

    Article  PubMed  CAS  Google Scholar 

  17. Andersen SL (2003) Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev 27(1–2):3–18

    Article  PubMed  Google Scholar 

  18. Paus T, Keshavan M, Giedd JN (2008) Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci 9(12):947–957. doi:10.1038/nrn2513

    PubMed  CAS  Google Scholar 

  19. Yang SC, Shieh KR (2007) Gonadal hormones-mediated effects on the stimulation of dopamine turnover in mesolimbic and nigrostriatal systems by cocaine- and amphetamine-regulated transcript (CART) peptide in male rats. Neuropharmacology 53(7):801–809. doi:10.1016/j.neuropharm.2007.08.007

    Article  PubMed  CAS  Google Scholar 

  20. Creutz LM, Kritzer MF (2004) Mesostriatal and mesolimbic projections of midbrain neurons immunoreactive for estrogen receptor beta or androgen receptors in rats. J Comp Neurol 476(4):348–362. doi:10.1002/cne.20229

    Article  PubMed  CAS  Google Scholar 

  21. Alonso R, Lopez-Coviella I (1998) Gonadal steroids and neuronal function. Neurochem Res 23(5):675–688

    Article  PubMed  CAS  Google Scholar 

  22. Weisz J, Ward IL (1980) Plasma testosterone and progesterone titers of pregnant rats, their male and female fetuses, and neonatal offspring. Endocrinology 106(1):306–316

    Article  PubMed  CAS  Google Scholar 

  23. Ward OB, Ward IL, Denning JH, Hendricks SE, French JA (2002) Hormonal mechanisms underlying aberrant sexual differentiation in male rats prenatally exposed to alcohol, stress, or both. Arch Sex Behav 31(1):9–16

    Article  PubMed  Google Scholar 

  24. Scott HM, Mason JI, Sharpe RM (2009) Steroidogenesis in the fetal testis and its susceptibility to disruption by exogenous compounds. Endocr Rev 30(7):883–925. doi:10.1210/er.2009-0016

    Article  PubMed  CAS  Google Scholar 

  25. Shono T, Suita S (2003) Disturbed pituitary-testicular axis inhibits testicular descent in the prenatal rat. BJU Int 92(6):641–643

    Article  PubMed  CAS  Google Scholar 

  26. Gerardin DC, Pereira OC, Kempinas WG, Florio JC, Moreira EG, Bernardi MM (2005) Sexual behavior, neuroendocrine, and neurochemical aspects in male rats exposed prenatally to stress. Physiol Behav 84(1):97–104. doi:10.1016/j.physbeh.2004.10.014

    Article  PubMed  CAS  Google Scholar 

  27. Pereira OC, Bernardi MM, Gerardin DC (2006) Could neonatal testosterone replacement prevent alterations induced by prenatal stress in male rats? Life Sci 78(24):2767–2771. doi:10.1016/j.lfs.2005.10.035

    Article  PubMed  CAS  Google Scholar 

  28. Barros VG, Rodriguez P, Martijena ID, Perez A, Molina VA, Antonelli MC (2006) Prenatal stress and early adoption effects on benzodiazepine receptors and anxiogenic behavior in the adult rat brain. Synapse 60(8):609–618

    Article  PubMed  CAS  Google Scholar 

  29. Rodriguez N, Mayer N, Gauna HF (2007) Effects of prenatal stress on male offspring sexual maturity. Biocell 31(1):67–74

    PubMed  CAS  Google Scholar 

  30. Pallares ME, Adrover E, Baier CJ, Bourguignon NS, Monteleone MC, Brocco MA, Gonzalez-Calvar SI, Antonelli MC (2013) Prenatal maternal restraint stress exposure alters the reproductive hormone profile and testis development of the rat male offspring. Stress 16(4):429–440. doi:10.3109/10253890.2012.761195

    Article  PubMed  CAS  Google Scholar 

  31. Maccari S, Piazza PV, Kabbaj M, Barbazanges A, Simon H, Le Moal M (1995) Adoption reverses the long-term impairment in glucocorticoid feedback induced by prenatal stress. J Neurosci 15(1 Pt 1):110–116

    PubMed  CAS  Google Scholar 

  32. Ward IL, Weisz J (1984) Differential effects of maternal stress on circulating levels of corticosterone, progesterone, and testosterone in male and female rat fetuses and their mothers. Endocrinology 114(5):1635–1644

    Article  PubMed  CAS  Google Scholar 

  33. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Harcourt Brace Jovanovich Publishers, San Diego

    Google Scholar 

  34. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  35. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  PubMed  CAS  Google Scholar 

  36. Biosystems A (2004) Guide to performing relative quantitation of gene expression using real-time quantitative PCR

  37. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed  CAS  Google Scholar 

  38. Ramos AJ, Tagliaferro P, Lopez EM, Pecci Saavedra J, Brusco A (2000) Neuroglial interactions in a model of para-chlorophenylalanine-induced serotonin depletion. Brain Res 883(1):1–14

    Article  PubMed  CAS  Google Scholar 

  39. Seeman P, Bzowej NH, Guan HC, Bergeron C, Becker LE, Reynolds GP, Bird ED, Riederer P, Jellinger K, Watanabe S et al (1987) Human brain dopamine receptors in children and aging adults. Synapse 1(5):399–404. doi:10.1002/syn.890010503

    Article  PubMed  CAS  Google Scholar 

  40. Teicher MH, Andersen SL, Hostetter JC Jr (1995) Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Brain Res Dev Brain Res 89(2):167–172

    Article  PubMed  CAS  Google Scholar 

  41. Andersen SL, Thompson AP, Krenzel E, Teicher MH (2002) Pubertal changes in gonadal hormones do not underlie adolescent dopamine receptor overproduction. Psychoneuroendocrinology 27(6):683–691

    Article  PubMed  CAS  Google Scholar 

  42. Fride E, Weinstock M (1989) Alterations in behavioral and striatal dopamine asymmetries induced by prenatal stress. Pharmacol Biochem Behav 32(2):425–430

    Article  PubMed  CAS  Google Scholar 

  43. Berger MA, Barros VG, Sarchi MI, Tarazi FI, Antonelli MC (2002) Long-term effects of prenatal stress on dopamine and glutamate receptors in adult rat brain. Neurochem Res 27(11):1525–1533

    Article  PubMed  CAS  Google Scholar 

  44. Kamei H, Kameyama T, Nabeshima T (1995) Activation of both dopamine D1 and D2 receptors necessary for amelioration of conditioned fear stress. Eur J Pharmacol 273(3):229–233

    Article  PubMed  CAS  Google Scholar 

  45. Laloux C, Mairesse J, Van Camp G, Giovine A, Branchi I, Bouret S, Morley-Fletcher S, Bergonzelli G, Malagodi M, Gradini R, Nicoletti F, Darnaudery M, Maccari S (2012) Anxiety-like behaviour and associated neurochemical and endocrinological alterations in male pups exposed to prenatal stress. Psychoneuroendocrinology 37(10):1646–1658. doi:10.1016/j.psyneuen.2012.02.010

    Article  PubMed  CAS  Google Scholar 

  46. Morley-Fletcher S, Rea M, Maccari S, Laviola G (2003) Environmental enrichment during adolescence reverses the effects of prenatal stress on play behaviour and HPA axis reactivity in rats. Eur J Neurosci 18(12):3367–3374

    Article  PubMed  Google Scholar 

  47. Bowman RE, MacLusky NJ, Sarmiento Y, Frankfurt M, Gordon M, Luine VN (2004) Sexually dimorphic effects of prenatal stress on cognition, hormonal responses, and central neurotransmitters. Endocrinology 145(8):3778–3787

    Article  PubMed  CAS  Google Scholar 

  48. Martinez-Tellez RI, Hernandez-Torres E, Gamboa C, Flores G (2009) Prenatal stress alters spine density and dendritic length of nucleus accumbens and hippocampus neurons in rat offspring. Synapse 63(9):794–804. doi:10.1002/syn.20664

    Article  PubMed  CAS  Google Scholar 

  49. Huttenlocher PR (1979) Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res 163(2):195–205

    Article  PubMed  CAS  Google Scholar 

  50. Segal M (2010) Dendritic spines, synaptic plasticity and neuronal survival: activity shapes dendritic spines to enhance neuronal viability. Eur J Neurosci 31(12):2178–2184. doi:10.1111/j.1460-9568.2010.07270.x

    Article  PubMed  Google Scholar 

  51. Weinstock M (2011) Sex-dependent changes induced by prenatal stress in cortical and hippocampal morphology and behaviour in rats: an update. Stress 14(6):604–613. doi:10.3109/10253890.2011.588294

    PubMed  CAS  Google Scholar 

  52. Henry C, Arsaut J, Arnauld E, Demotes-Mainard J (1996) Transient neonatal elevation in hypothalamic estrogen receptor mRNA in prenatally-stressed male rats. Neurosci Lett 216(2):141–145

    PubMed  CAS  Google Scholar 

  53. Pallares ME, Adrover E, Baier CJ, Bourguignon NS, Monteleone MC, Brocco MA, Gonzalez-Calvar SI, Antonelli MC (2012) Prenatal maternal restraint stress exposure alters the reproductive hormone profile and testis development of the rat male offspring. Stress. doi:10.3109/10253890.2012.761195

    Google Scholar 

  54. McEwen BS, Alves SE (1999) Estrogen actions in the central nervous system. Endocr Rev 20(3):279–307

    Article  PubMed  CAS  Google Scholar 

  55. Kuppers E, Ivanova T, Karolczak M, Beyer C (2000) Estrogen: a multifunctional messenger to nigrostriatal dopaminergic neurons. J Neurocytol 29(5–6):375–385

    Article  PubMed  CAS  Google Scholar 

  56. Solum DT, Handa RJ (2002) Estrogen regulates the development of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus. J Neurosci 22(7):2650–2659

    PubMed  CAS  Google Scholar 

  57. Wilson ME, Westberry JM, Trout AL (2011) Estrogen receptor-alpha gene expression in the cortex: sex differences during development and in adulthood. Horm Behav 59(3):353–357. doi:10.1016/j.yhbeh.2010.08.004

    Article  PubMed  CAS  Google Scholar 

  58. Van den Hove DL, Steinbusch HW, Scheepens A, Van de Berg WD, Kooiman LA, Boosten BJ, Prickaerts J, Blanco CE (2006) Prenatal stress and neonatal rat brain development. Neuroscience 137(1):145–155. doi:10.1016/j.neuroscience.2005.08.060

    Article  PubMed  Google Scholar 

  59. Fumagalli F, Bedogni F, Perez J, Racagni G, Riva MA (2004) Corticostriatal brain-derived neurotrophic factor dysregulation in adult rats following prenatal stress. Eur J Neurosci 20(5):1348–1354

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Trinidad Saez for her help in image analysis of the data and to Dr. Sandra Zárate for her skillful technical assistance in the Western blot studies. We are also indebted to Martin Brahamian and Mercedes Imsem for their help and supervision of the rats management and care. The skillful technical assistance and bibliographical managements of Mrs Susana Buglione is greatly appreciated. This research was supported by grants from CONICET (PIP 2065) and ANPCYT (PICT 31981 and PICT 0040). The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Cristina Antonelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pallarés, M.E., Baier, C.J., Adrover, E. et al. Age-Dependent Effects of Prenatal Stress on the Corticolimbic Dopaminergic System Development in the Rat Male Offspring. Neurochem Res 38, 2323–2335 (2013). https://doi.org/10.1007/s11064-013-1143-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1143-8

Keywords

Navigation